Find yields further insight into causes of Parkinson's disease

February 1, 2007

In humans, a dearth of the neurotransmitter dopamine has long been known to play a role in Parkinson's disease. It is also known that mutations in a protein called parkin cause a form of Parkinson's that is inherited.

Now, UCLA scientists, reporting in the Jan. 31 issue of The Journal of Neuroscience, have put the two together. Using a new model of Parkinson's disease they developed in the simple Drosophila (fruit fly), the researchers show for the first time that a mutated form of the human parkin gene inserted into Drosophila specifically results in the death of dopaminergic cells, ultimately resulting in Parkinson's-like motor dysfunction in the fly. Thus, the interaction of mutant parkin with dopamine may be key to understanding the cause of familial Parkinson's disease—Parkinson's that runs in families.

Conventional wisdom has held that parkin is recessive, meaning that two copies of the mutated gene were required in order to see the clinical signs of Parkinson's disease. But the researchers, led by George Jackson, M.D., Ph.D., UCLA associate professor of neurology and senior scientist at the Semel Institute for Neuroscience and Human Behavior at UCLA, wanted to see if they could get the protein to act in a dominant fashion, so they put only one copy of the mutation into their fly model. The result was the death of the neurons that use dopamine, the neurotransmitter long implicated in Parkinson's disease.

"We put the mutant parkin in all different kinds of tissues and in different kinds of neurons, and it was toxic only to the ones that used dopamine," Jackson said. "No one's shown this degree of specificity for dopaminergic neurons."

Having a genetic model of Parkinson's disease (PD) in the fruit fly will allow researchers to run mass testing, or "screens," of genes in order to find the novel pathways — networks of interacting proteins that carry out biological functions — that control survival of those dopaminergic neurons. "Since a lot of those pathways regulating cell survival and death are conserved by evolution all the way from flies to humans," said Jackson, "if we find those genes in the fly, they may represent new therapeutic targets for PD in humans."

The researchers examined the results not only from a genetic standpoint but from a behavioral standpoint as well. To measure the progression of Parkinson's disease in the fly, they designed a small series of rotating glass cylinders that they christened a "fly rotarod." A healthy fly placed inside the hollow cylinder would simply cling to the wall during the slow 360-degree loop. But flies with Parkinson's disease would fall, depending on the progression of their disease. The researchers used infrared beams to measure when they fell.

The researchers also plan to use their fly model to test a library of some 5,000 drug compounds approved by the Food and Drug Administration to see which ones might stop disease progression. If they find one that works, such a compound, which could serve as a kind of skeleton for other therapeutic drugs, could then be tested in mouse models and eventually in humans.

While non-scientists may have trouble understanding how a simple fruit fly can have implications for humans, Jackson said that, thanks to the biological similarities between species, "the point of what we do is that if we find things, then ultimately, we can examine them in humans."

Source: University of California - Los Angeles

Explore further: Potential therapeutic target for Parkinson's disease

Related Stories

Potential therapeutic target for Parkinson's disease

June 7, 2017
Investigations by scientists in Japan illustrate how the loss of a key mitochondrial protein facilitates the progression of Parkinson's disease. The findings are published in Nature Communications (June 2017).

Big hunt for small molecule to treat neurodegenerative diseases

May 24, 2017
Late last year, University of Arizona colleagues Daniela Zarnescu and May Khanna sped west on Interstate 8 bound for a brain-research conference in San Diego. Khanna is a biochemist who works with small molecules. Zarnescu ...

Tau prevents synaptic transmission at early stage of neurodegeneration

May 19, 2017
Tau proteins are involved in more than twenty neurodegenerative diseases, including various forms of dementia. These proteins clump together in patients' brains to form neuronal tangles: protein aggregation that eventually ...

Get a clue: Biochemist studies fruit fly to understand Parkinson's disease, muscle wasting

June 22, 2016
The fruit fly may help us be less clueless about human muscle development and Parkinson's disease.

Flies model a potential sweet treatment for Parkinson's disease

April 6, 2013
Researchers from Tel Aviv University describe experiments that could lead to a new approach for treating Parkinson's disease (PD) using a common sweetener, mannitol. This research is presented today at the Genetics Society ...

Visual clue to new Parkinson's disease therapies

May 15, 2014
A biologist and a psychologist at the University of York have joined forces with a drug discovery group at Lundbeck in Denmark to develop a potential route to new therapies for the treatment of Parkinson's Disease (PD).

Recommended for you

Novel approach to track HIV infection

August 18, 2017
Northwestern Medicine scientists have developed a novel method of tracking HIV infection, allowing the behavior of individual virions—infectious particles—to be connected to infectivity.

Faulty gene linked to obesity in adults

August 18, 2017
Groundbreaking new research linking obesity and metabolic dysfunction to a problem in the energy generators in cells has been published by researchers from the Harry Perkins Institute of Medical Research and The University ...

Two lung diseases killed 3.6 million in 2015: study

August 17, 2017
The two most common chronic lung diseases claimed 3.6 million lives worldwide in 2015, according to a tally published Thursday in The Lancet Respiratory Medicine.

New test differentiates between Lyme disease, similar illness

August 16, 2017
Lyme disease is the most commonly reported vector-borne illness in the United States. But it can be confused with similar conditions, including Southern Tick-Associated Rash Illness. A team of researchers led by Colorado ...

Addressing superbug resistance with phage therapy

August 16, 2017
International research involving a Monash biologist shows that bacteriophage therapy – a process whereby bacterial viruses attack and destroy specific strains of bacteria - can be used successfully to treat systemic, multidrug ...

Can previous exposure to west Nile alter the course of Zika?

August 15, 2017
West Nile virus is no stranger to the U.S.-Mexico border; thousands of people in the region have contracted the mosquito-borne virus in the past. But could this previous exposure affect how intensely Zika sickens someone ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.