Blocking the effects of amyloid b in Alzheimer's disease

July 30, 2012

During Alzheimer's disease, 'plaques' of amyloid beta (Ab) and tau protein 'tangles' develop in the brain, leading to the death of brain cells and disruption of chemical signaling between neurons. This leads to loss of memory, mood changes, and difficulties with reasoning. New research published in BioMed Central's open access journal Alzheimer's Research & Therapy, has found that up-regulating the gene Hes1 largely counteracted the effects of Ab on neurons, including preventing cell death, and on GABAergic signaling.

The exact mechanism behind how Ab contributes to Alzheimer's disease is not yet fully understood, however researchers from Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) in Spain recently discovered that Ab interferes with the normal activity of nerve growth factor (NGF). One of the actions of NGF is activating the protein Hes1, a transcription factor required to turn on other genes. Without this factor GABAergic signaling within the brain decreases.

Using gene therapy techniques, Pedro Chacón and Alfredo Rodríguez-Tébar augmented the amount of Hes1 in cultured neurons. Increasing the amount of Hes1, directly or by activating the protein NF-kB (which in turn up-regulate the cell's own Hes1), abolished the effect of Ab and prevented neuron death. Additionally another growth factor, TGFb, which can also activate NF-kB, was able to prevent the effects of Ab on neurons by improving levels of Hes1.

Pedro Chacón explained, "Ab usually decreases the length of dendrites and GABAergic connectivity of neurons, however these effects were completely reversed by Hes1, NF-kB, and TGFb. When we grew neurons in a concentration of Ab which normally kills most cells, 50% of the neurons with extra Hes1 were able to survive."

These results demonstrate that neurons can be protected from the effects of Ab by increasing the amount of Hes1 in the cells. By clarifying the roles of NGF or TGFb in Hes1 protection this research provides strategies for limiting the effects of Alzheimer's disease.

Explore further: Pathological aging brains contain the same amyloid plaques as Alzheimer's disease

More information: Increased expression of the homologue of Enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector Pedro J Chacon and Alfredo Rodriguez-Tebar Alzheimer's Research & Therapy (in press)

Related Stories

Pathological aging brains contain the same amyloid plaques as Alzheimer's disease

May 23, 2012
Pathological aging (PA) is used to describe the brains of people which have Alzheimer's disease (AD)-like pathology but where the person showed no signs of cognitive impairment whilst they were alive. New research, published ...

Recommended for you

Researchers reveal new details on aged brain, Alzheimer's and dementia

November 21, 2017
In a comprehensive analysis of samples from 107 aged human brains, researchers at the Allen Institute for Brain Science, UW Medicine and Kaiser Permanente Washington Health Research Institute have discovered details that ...

Dementia study sheds light on how damage spreads through brain

November 20, 2017
Insights into how a key chemical disrupts brain cells in a common type of dementia have been revealed by scientists.

Study shows video games could cut dementia risk in seniors

November 16, 2017
Could playing video games help keep the brain agile as we age?

New player in Alzheimer's disease pathogenesis identified

November 14, 2017
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP) have shown that a protein called membralin is critical for keeping Alzheimer's disease pathology in check. The study, published in Nature Communications, ...

Biomarker may predict early Alzheimer's disease

November 10, 2017
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified a peptide that could lead to the early detection of Alzheimer's disease (AD). The discovery, published in Nature Communications, may ...

Smell test challenge suggests clinical benefit for some before development of Alzheimer's

November 10, 2017
Researchers at Columbia University Medical Center (CUMC) and the New York State Psychiatric Institute (NYSPI) may have discovered a way to use a patient's sense of smell to treat Alzheimer's disease before it ever develops. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.