And the beat goes on: Scientists jump-start the heart by gene transfer

October 5, 2009

Scientists from the Universities of Michigan and Minnesota show in a research report published online in the FASEB Journal that gene therapy may be used to improve an ailing heart's ability to contract properly. In addition to showing gene therapy's potential for reversing the course of heart failure, it also offers a tantalizing glimpse of a day when "closed heart surgery" via gene therapy is as commonly prescribed as today's cocktail of drugs.

"We hope that our study will lead some day to the development of new genetic-based therapies for patients," said Todd J. Herron, Ph.D., one of the researchers involved in the study and research assistant professor of molecular and integrative physiology at the University of Michigan. "The advent of molecular motor-based gene transfer for the failing heart will hopefully improve and quality of life for heart failure patients."

To make this advance, Herron and colleagues treated heart muscle cells from the failing hearts of rabbits and humans with a virus (adenovirus) modified to carry a gene which produces a protein that enables heart cells to contract normally (fast ) or a gene that becomes active in failing hearts, which is believed to be part of the body's way of coping with its perilous situation (slow molecular motor). Heart cells treated with the gene to express the fast molecular motor contracted better, while those treated with the gene to express the slow molecular motor were unaffected.

"Helping hearts heal themselves, rather than prescribing yet another drug to sustain a failing organ, would be a major advance for doctors and patients alike," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "Equally important, it shows that remains one of the most promising approaches to treating the world's most common and deadliest diseases."

According to the U.S. , heart failure is a condition where the heart cannot pump enough blood and oxygen to meet the needs of other body organs. Approximately 5 million people in the United States have heart failure, about 550,000 new cases are diagnosed each year, and more than 287,000 people in the United States die each year of heart failure. The most common causes of heart failure are coronary artery disease, hypertension or high blood pressure, and diabetes. Current treatments usually involve three to four medicines: ACE inhibitors, diuretics, digoxin, and beta blockers.

Current clinical agents and treatments focus on the amount of calcium available for contraction, which can provide short-term cardiac benefits, but are associated with an increased mortality in the long-term. Results from this study show that calcium-independent treatments could have implications for heart diseases associated with depressed heart function, due to the effectiveness of fast molecular motor gene transfer on the improved contractions of human heart muscle cells.

More information: Todd J. Herron, Eric Devaney, Lakshmi Mundada, Erik Arden, Sharlene Day, Guadalupe Guerrero-Serna, Immanuel Turner, Margaret Westfall, and Joseph M. Metzger. Ca2+-independent positive molecular inotropy for failing rabbit and human cardiac muscle by alpha-myosin motor . FASEB J. doi:10.1096/fj.09-140566

Source: Federation of American Societies for Experimental Biology (news : web)

Related Stories

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.