Study finds faulty fat sensor implicated in obesity and liver disease

February 19, 2012

Defects in a protein that functions as a dietary fat sensor may be a cause of obesity and liver disease, according to a study published in the journal Nature, led by researchers at Imperial College London. The findings highlight a promising target for new drugs to treat obesity and metabolic disorders.

The protein GPR120 is found on the surface of cells in the gut, liver and fat tissue and allows cells to detect and respond to unsaturated from the diet, especially the omega-3 fatty acids which are believed to have a beneficial impact on health. Scientists found that mice deficient in GPR120 were more prone to developing obesity and when fed a high-fat diet. They also found that people with a certain mutation in the gene encoding GPR120, which stops the protein from responding to omega-3 fatty acids, were significantly more likely to be obese.

In the gut, when unsaturated fatty acids from food bind to GPR120, this stimulates the release of hormones that suppress appetite and stimulate the pancreas to secrete insulin. When fat cells sense high levels of fat in the blood through GPR120, it stimulates them to divide to produce more fat cells to store all the fat, reducing the risk of fatty liver and furring of the arteries. This mechanism could be an important pathway for bringing about some of the healthy effects of omega-3s.

When they were fed on a high-fat diet, mice that lacked GPR120 not only became obese but also had fatty livers, lower numbers of fat cells, and poor control of . The researchers believe that mice that are deficient in GPR120 have difficulty storing excess fat in fat tissue. Instead, their bodies store fat in areas where it can cause health problems, like the liver, the muscles and in the walls of arteries. In humans, this pattern of obesity is associated with and heart disease.

The study involved scientists in the UK, France and Japan. It was led by Professor Philippe Froguel, from the School of Public Health at Imperial College London.

"Being overweight is not always unhealthy if you can make more to store fat," said Professor Froguel. "Some people seem to be unable to do this, and instead they deposit fat around their internal organs, which is very unhealthy. Our study suggests that in both mice and humans, defects in GPR120 combined with a high-fat diet greatly increase the risk of this unhealthy pattern of obesity. We think GPR120 could be a useful target for to treat obesity and liver diseases."

The researchers analysed the gene for GPR120 in 6,942 obese people and 7,654 controls to test whether differences in the code that carries instructions for making the protein contribute to obesity in humans. They found that one mutation that renders the protein dysfunctional increases a person's risk of by 60 per cent. The researchers think this mutation mimics the effect of a bad diet lacking in unsaturated omega-3 .

Explore further: Omega-3 key in reducing diabetes and heart disease

More information: A. Ichimura et al. "Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human." Nature, published online 19 February 2012. doi:10.1038/nature10798

Related Stories

Omega-3 key in reducing diabetes and heart disease

October 31, 2011
(Medical Xpress) -- Omega-3 can help to reduce the risk of diabetes and heart disease especially as people age, says Massey University nutrition professor Bernhard Breier, co-author of a new international study.

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

Engineering the gut microbiome with 'good' bacteria may help treat Crohn's disease

November 15, 2017
Penn Medicine researchers have singled out a bacterial enzyme behind an imbalance in the gut microbiome linked to Crohn's disease. The new study, published online this week in Science Translational Medicine, suggests that ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.