June 17, 2021

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

Researchers find new hints that could explain how Alzheimer's disease spreads in human brains

Prions. Credit: Case Western Reserve University
× close
Prions. Credit: Case Western Reserve University

Case Western Reserve University researchers studying prions—misfolded proteins that cause lethal incurable diseases—have identified for the first time surface features of human prions responsible for their replication in the brain.

The ultimate goal of the research is to help design a strategy to stop in humans—and, ultimately, to translate new approaches to work on Alzheimer's and other .

Scientists have yet to discover the exact cause of Alzheimer's disease, but largely agree that protein issues play a role in its emergence and progression. Alzheimer's disease afflicts more than 6 million people in the U.S., and the Alzheimer's Association estimates that their care will cost an estimated $355 billion this year.

Research was done at the Safar Laboratory in the Department of Pathology and the Center for Proteomics and Bioinformatics at Case Western Reserve University School of Medicine, and at Case Western Reserve's Center for Synchrotron Bioscience at Brookhaven Laboratories in New York. Jiri Safar, professor of pathology, neurology and neurosciences at the Case Western Reserve School of Medicine, leads the work. The report, "Structurally distinct external domains drive replication of major human prions," was published in the June 17 issue of PLOS Pathogens.

Prions were first discovered in the late 1980s as a protein-containing biological agent that could replicate itself in living cells without nucleic acid. The public health impact of medically transmitted —and also animal transmissions of bovine spongiform encephalopathy (BSE, "") prions—dramatically accelerated the development of a new scientific concept of self-replicating protein.

Human prions can bind to neighboring normal proteins in the brain, and cause microscopic holes. In essence, they turn brains into sponge-like structures and lead to dementia and death. These discoveries led to the ongoing scientific debate on whether prion-like mechanisms may be involved in the origin and spread of other neurodegenerative disorders in humans.

"Human prion diseases are conceivably the most heterogenous neurodegenerative disorders, and a growing body of research indicates that they are caused by distinct strains of human prions," Safar said. "However, the structural studies of human prions have lagged behind the recent progress in rodent laboratory prions, in part because of their complex molecular characteristics and prohibitive biosafety requirements necessary for investigating disease which is invariably fatal and has no treatment."

The researchers developed a new three-step process to study human prions:

"The work is a critical first step for identifying sites of structural importance that reflect differences between prions of different diagnosis and aggressiveness," said Mark Chance, vice dean for research at the School of Medicine and a co-investigator on the work. "Thus, we can now envision designing small molecules to bind to these sites of nucleation and replication and block progression of human disease in patients."

This structural approach, Chance said, also provides a template for how to identify structurally important sites on misfolded proteins in other diseases such as Alzheimer's, which involves protein propagation from cell to cell in a similar way to prions.

Journal information: PLoS Pathogens

Load comments (0)