Energy levels link sleep control mechanisms

May 25, 2012
Energy levels link sleep control mechanisms
Credit: Thinkstock

Sleep, or lack of it, can determine level of cognitive performance which is linked with accidents as well as increased risk of serious health problems. Links between cell energy levels, gene transcription and sleep rhythms may uncover answers to sleep disorders and the ill-effects of sleep deprivation.

Timing and quality of sleep is determined by a homeostatic process that compensates for sleeplessness and a to determine the time of day when we should sleep. The effects of even minor misalignments between these two processes, as in jet lag for example, indicate that sleep control is a very relevant feature in and .

Previous studies by the EU-funded 'Redox potential as an interface between sleep homeostasis and circadian rhythms' (Redoxsleepcircadian) project members have suggested that although the two cycles are supposed to operate independently, the two main clock genes work together for homeostatic sleep regulation and generation of . Not only that, but both CLOCK and NPAS2, the core clock genes, depend on the redox potential in cells suggesting that the two sleep mechanisms are linked through .

The aim of the recently completed project Redoxsleepcircadian was to understand the that determine our daytime performance and sleep quality. By inducing circadian rhythms in a type of connective tissue cell, fibroblasts, the sleep scientists could determine if there were any accompanying redox changes.

Using redox genetic probes along with a time lapse imaging system, changes in redox potential were recorded in living fibroblasts. Any increases in transcriptional activity in the clock genes Per1 and Per2 during sleep deprivation may indicate energy deficits in prolonged wakefulness. Per 1 and Per 2 are under direct control of CLOCK and NPAS2.

Results indicated that Per2 regulates activity-induced and circadian mechanisms central to regulation of sleep and wake periods. Moreover, molecular feedback underlying circadian rhythm generation was able to regulate the requirements of homeostatic sleep need.

In parallel, the project team also focused on Per2 in mice. This sleep gene has been observed to increase expression after sleep deprivation (SD) in the rodent. The scientists demonstrated that all living mice increased levels of Per2 protein production with different dynamics in the brain. This was particularly so in the cerebral cortex as well as in the liver and the kidney.

Interestingly, extended times without sleep affected Per2 RNA expression through circadian and non-circadian mechanisms always resulting in increased Per2 protein. This suggests that there is no separation between the two cycles.

At the recent close of the project, Redoxsleepcircadian was further investigating the role of the main circadian pacemaker, the suprachiasmatic nucleus (SCN), a miniscule region on the brain's midline. Regulating many neuronal and hormonal activities, the SCN is key player in the relationship between , sleep and wakefulness.

Ability to control sleep rhythms could mean a welcome reprieve for patients with . Jet lag and disorientation due to shift work for many of the world's labour force could also become things of the past.

Explore further: Hormones tied to elderly sleep problems

Related Stories

Hormones tied to elderly sleep problems

April 12, 2011

(PhysOrg.com) -- Have you ever wondered why grandma and grandpa head to bed early but are up with the sun every morning? A new study by Lucia Pagani and Steven A. Brown of the University of Zurich recently published in the ...

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.