Study reveal brain cells' weakest links

September 21, 2012

(Medical Xpress)—People with degenerative neurological conditions could benefit from research that shows why their brain cells stop communicating properly.

Scientists believe that the findings could help to develop treatments that slow the progress of a broad range of such as Huntingdon's, Alzheimer's and Parkinson's diseases.

The team at the University, led by Professor Tom Gillingwater, analysed how connection points between brain cells break down during disease and identified six proteins that control the process.

Sending signals

When connection points in the brain, known as synapses, stop working - because of injury or disease - the chain of brain signalling breaks down and cannot be repaired.

The research from The Roslin Institute and Centre for Integrative Physiology at the University will help scientists identify drugs that target these proteins.

This could eventually enable clinicians to slow the progress of these disorders.

"This study has identified key proteins that may control what goes wrong in a range of brain disorders. We now hope to identify drugs that prevent the breakdown of communication between and, as a result, halt the progress of these devastating ." said Dr Thomas Wishart, Career Track Fellow, The Roslin Institute at the University.

The study, published in , was funded by the Wellcome Trust and Biotechnology and Biological Sciences Research Council.

Explore further: Tracking proteins behaving badly provides insights for treatments of brain diseases

Related Stories

Molecular 'on-off' switch for Parkinson's disease discovered

May 23, 2012

(Medical Xpress) -- Scientists at the Medical Research Council (MRC) Protein Phosphorylation Unit at the University of Dundee have discovered a new molecular switch that acts to protect the brain from developing Parkinson's ...

Researchers 'switch off' neurodegeneration in mice

May 8, 2012

Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block ...

Protein sheds insight into vCJD

December 2, 2011

A protein linked to the immune system could play a key role in helping scientists understand how vCJD spreads throughout the body.

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

ALS study reveals role of RNA-binding proteins

October 20, 2016

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.