Researchers 'switch off' neurodegeneration in mice

May 8, 2012

Researchers at the Medical Research Council (MRC) Toxicology Unit at the University of Leicester have identified a major pathway leading to brain cell death in mice with neurodegenerative disease. The team was able to block the pathway, preventing brain cell death and increasing survival in the mice.

In human , including Alzheimer’s, Parkinson’s and prion diseases, proteins “misfold” in a variety of different ways resulting in the build up of misshapen proteins. These form the plaques found in Alzheimer’s and the Lewy bodies found in Parkinson’s disease.
 
The researchers studied with neurodegeneration caused by prion disease, as these mouse models currently provide the best animal representation of human neurodegenerative disorders, where it is known that the build up of misshapen proteins is linked with brain .
 
They found that the build up of misfolded proteins in the brains of these mice activates a natural defence mechanism in cells, which switches off the production of new proteins. This would normally switch back ‘on’ again, but in these mice the continued build-up of misshapen protein keeps the switch turned ‘off’. This is the trigger point leading to brain cell death, as those key proteins essential for nerve cell are not made.
 
By injecting a protein that blocks the ‘off’ switch of the pathway, the scientists were able to restore protein production, independently of the build up of misshapen proteins, and halt the neurodegeneration. The were protected, protein levels and synaptic transmission (the way in which brain cells signal to each other) were restored and the mice lived longer, even though only a very small part of their brain had been treated.
 
Misshapen proteins in human neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, also over-activate this fundamental pathway controlling synthesis in the brains of patients, which represents a common target underlying these different clinical conditions. The scientists’ results suggest that treatments focused on this could be protective in a range of neurodegenerative disease in which misshapen proteins are building up and causing neurons to die.
 
Professor Giovanna Mallucci, who led the team, said: “What’s exciting is the emergence of a common mechanism of across a range of different neurodegenerative disorders and activated by the different misfolded proteins in each disease. The fact that in mice with prion disease we were able to manipulate this mechanism and protect the brain cells means we may have a way forward in how we treat other disorders. Instead of targeting individual misfolded proteins in different neurodegenerative diseases, we may be able to target the shared pathways and rescue brain cell degeneration irrespective of the underlying disease.”
 
Professor Hugh Perry, chair of the MRC’s Neuroscience and Mental Health Board, said: “Neurodegenerative diseases such as Alzheimer’s and Parkinson’s are debilitating and largely untreatable conditions. Alzheimer’s disease and related disorders affect over seven million people in Europe, and this figure is expected to double every 20 years as the population ages across Europe. The MRC believes that research such as this, which looks at the fundamental mechanisms of these devastating diseases, is absolutely vital. Understanding the mechanism that leads to neuronal dysfunction prior to neuronal loss is a critical step in finding ways to arrest disease progression.”

Explore further: Tracking proteins behaving badly provides insights for treatments of brain diseases

Related Stories

Tracking proteins behaving badly provides insights for treatments of brain diseases

March 19, 2012
(Medical Xpress) -- A research team led by the University of Melbourne has developed a novel technique that tracks diseased proteins behaving badly by forming clusters in brain diseases such as Huntington’s and Alzheimer’s.

Alzheimer's might be transmissible in similar way as infectious prion diseases: study

October 4, 2011
The brain damage that characterizes Alzheimer's disease may originate in a form similar to that of infectious prion diseases such as bovine spongiform encephalopathy (mad cow) and Creutzfeldt-Jakob, according to newly published ...

Brain cells created from patients' skin cells

February 7, 2012
(Medical Xpress) -- Cambridge scientists have, for the first time, created cerebral cortex cells – those that make up the brain’s grey matter – from a small sample of human skin.  The researchers’ ...

Scientists uncover free radical clue to dementia

July 22, 2011
A computer model programmed by scientists at Newcastle University suggests that preventing damage from free radicals could be key to fighting dementia.

Researchers develop novel technique for early detection of misfolded protein

April 6, 2012
(Phys.org) -- University of Delaware assistant professor David W. Colby is co-author of a paper in the March 23 issue of the Journal of Biological Chemistry that suggests protein misfolding may occur early in the pathogenesis, ...

Recommended for you

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.