Scientists report major breakthrough in age-related macular degeneration prevention

April 8, 2012

Scientists at Trinity College Dublin have discovered that a part of the immune system called the inflammasome is involved in regulating the development of one of the most common forms of blindness, called Age-Related Macular Degeneration (AMD). They have discovered that controlling an inflammatory component IL-18, in cases of Age-Related Macular Degeneration (AMD) could prevent the development of the disease.

The disease involves loss of central vision, people with advanced disease being unable to read, watch TV, enjoy the cinema, drive, or use a computer − in short, everyday living becomes very difficult. The research, which is published this week in the international medical journal, Nature Medicine, is supported by Science Foundation Ireland, the American Health Assistance Foundation (AHAF), the Health Research Board (HRB) and Fighting Blindness Ireland.

The key diagnostic feature of AMD is the presence of "drusen", which are recognised during an eye exam as yellowish/white deposits in the central region of the retina called the macula. Dry AMD is characterised by the presence of excessive amounts of drusen and there are currently no forms of therapy other than recommended lifestyle changes such as giving up smoking, which is a recognised risk factor. However, a significant number of cases of the "dry" form of AMD can progress to the "wet" form, where blood vessels underneath the retina begin to grow, leading to central . If you hold two coins immediately in front of your eyes, you will see a single large black circle blocking out your . This is a very realistic simulation of what it is like to live with advanced disease.

The leading co-authors of the Nature Medicine paper, Trinity College scientists, Dr Sarah Doyle and Dr Matthew Campbell have together discovered that drusen accumulating in the macula can lead to the production of two inflammatory components termed IL-1beta and IL-18. These findings were based on studies involving drusen isolated from donor AMD eyes in tandem with pre-clinical studies on models of the disease.

"Traditionally, inflammation in the retina or indeed the eye in general is not beneficial and is a pathological hallmark of many eye diseases, including AMD. However we have identified, that one inflammatory component termed IL-18 acts as a so-called anti-angiogenic factor, preventing the progression of wet AMD" says Dr. Campbell.

"The progression from "dry" to "wet" AMD appears to be mediated by the inflammatory component IL-18, our results directly suggest that controlling or indeed augmenting the levels of IL-18 in the retinas of patients with dry AMD could prevent the development of the wet form of disease, which leads us to an exciting new prospect for a novel therapy for AMD" says Dr Doyle.

The research was undertaken at Trinity College's Ocular Genetics Unit, Director, Professor Pete Humphries and at the laboratories of Professor Luke O'Neill at the Trinity Biomedical Sciences Institute, in collaboration with Professor Joe Holyfield at the Cole Eye Institute at Cleveland, Ohio.

Explore further: Researchers develop risk assessment model for advanced age-related macular degeneration

More information: 'NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components' Nature Medicine (2012).

Related Stories

The genetic basis for age-related macular degeneration

February 23, 2012

Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide, especially in developed countries, and there is currently no known treatment or cure or for the vast majority of AMD patients. New ...

Recommended for you

A pocket-sized retina camera, no dilating required

March 20, 2017

It's the part of the eye exam everyone hates: the pupil-dilating eye drops. The drops work by opening the pupil and preventing the iris from constricting in response to light and are often used for routine examination and ...

Scientists deploy CRISPR to preserve photoreceptors in mice

March 14, 2017

Silencing a gene called Nrl in mice prevents the loss of cells from degenerative diseases of the retina, according to a new study. The findings could lead to novel therapies for preventing vision loss from human diseases ...

New help for that bane of middle-age: blurry close-up vision

February 28, 2017

Squinting while texting? Always losing your reading glasses? An eye implant that takes about 10 minutes to put in place is the newest in a list of surgical repairs for the blurry close-up vision that is a bane of middle age. ...

Vitamin B3 prevents glaucoma in laboratory mice

February 16, 2017

In mice genetically predisposed to glaucoma, vitamin B3 added to drinking water is effective at preventing the disease, a research team led by Jackson Laboratory Professor and Howard Hughes Medical Investigator Simon W.M. ...

GARP2 accelerates retinal degeneration in a mouse model

February 15, 2017

In the retina of the eye, rod and cone cells turn light into electrical signals, the first step toward human vision. University of Alabama at Birmingham researchers are studying rod cell proteins GARP1 and GARP2 to learn ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.