The genetic basis for age-related macular degeneration

February 23, 2012, BioMed Central
Fluorescent micrograph of a macula with extensive drusen accumulation. Drusen accumulate between the RPE and the choroid. In addition to being sites of inflammation, drusen are believed to disrupt normal RPE and choroid function, leading to changes in gene expression and eventual loss of vision. Image: Dr. Robert Avery, California Retina Consultants

Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide, especially in developed countries, and there is currently no known treatment or cure or for the vast majority of AMD patients. New research published in BioMed Central's open access journal Genome Medicine has identified genes whose expression levels can identify people with AMD, as well as tell apart AMD subtypes.

It is estimated that 6.5% of people over age 40 in the US currently have AMD. There is an inheritable factor but risk is also increased for smokers and with exposure to UV light. Genome-wide studies have indicated that genes involved in the innate immune system and fat metabolism are involved in this disease. However none of these prior studies examined differences between AMD and normal eyes.

In order to address this question, researchers at the University of California Santa Barbara, the University of Utah John Moran Eye Center, and the University of Iowa combined forces and used a human donor eye repository to identify genes up-regulated in AMD. The ability of these genes to recognize AMD was tested on a separate set of samples.

The team discovered over 50 genes that have higher than normal levels in AMD, the top 20 of which were able to 'predict' a clinical AMD diagnosis. Genes over-expressed in the RPE-choroid (a tissue complex located beneath the retina) included components of , while in the retina, the researchers found genes involved in wound healing and the complement cascade, a part of the . They found retinal genes with that matched the for advanced stages of AMD.

Dr. Monte Radeke, one of the project leaders, explained, "Not only are these genes able to identify people with clinically recognized AMD and distinguish between different advanced types – some of these genes appear to be associated with pre-clinical stages of AMD. This suggests that they may be involved in key processes that drive the disease. Now that we know the identity and function of many of the genes involved in the disease, we can start to look among them to develop new diagnostic methods, and for new targets for the development of treatments for all forms of AMD."

Explore further: Keeping an eye on the Japanese genome

More information: Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks, Aaron M Newman, Natasha B Gallo, Lisa S Hancox, Norma J Miller, Carolyn M Radeke, Michelle A Maloney, James B Cooper, Gregory S Hageman, Don H Anderson, Lincoln V Johnson and Monte J Radeke, Genome Medicine (in press) genomemedicine.com/

Related Stories

Keeping an eye on the Japanese genome

January 13, 2012
Age-related macular degeneration (AMD) is a common disease that can result in blindness. It is caused by cell death in the eye’s retina, which is partly responsible for transforming visual stimuli into electrical signals ...

Researchers develop risk assessment model for advanced age-related macular degeneration

August 8, 2011
A new risk assessment model may help predict development of advanced age-related macular degeneration, according to a report published Online First by Archives of Ophthalmology, one of the JAMA/Archives journals.

Recommended for you

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Large-scale study to pinpoint genes linked to obesity

January 10, 2018
It's not just diet and physical activity; your genes also determine how easily you lose or gain weight. In a study published in the January issue of Nature Genetics, researchers at the Icahn School of Medicine at Mount Sinai ...

Identical twins can share more than identical genes

January 9, 2018
An international group of researchers has discovered a new phenomenon that occurs in identical twins: independent of their identical genes, they share an additional level of molecular similarity that influences their biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.