Reduction of excess brain activity improves memory in amnestic mild cognitive impairment

May 9, 2012

Research published in the May 10 issue of the journal Neuron, describes a potential new therapeutic approach for improving memory and modifying disease progression in patients with amnestic mild cognitive impairment. The study finds that excess brain activity may be doing more harm than good in some conditions that cause mild cognitive decline and memory impairment.

Elevated activity in specific parts of the hippocampus, a brain region involved in memory, is often seen in disorders associated with an increased risk for Alzheimer's disease. Amnestic (aMCI), where memory is worse than would be expected for a person's age, is one such disorder. "In the case of early aMCI, it has been suggested that the increased hippocampal activation may serve a beneficial function by recruiting additional neural resources to compensate for those that are lost," explains senior study author, Dr. Michela Gallagher, from Johns Hopkins University. "However, animal studies have raised the alternative view that this excess activation may be contributing to memory impairment."

Dr. Gallagher and colleagues tested how a reduction of hippocampal activity would impact human patients with aMCI. The researchers used a low dose of a drug used clinically to treat epilepsy, for the purpose of reducing hippocampal activity in subjects with aMCI to levels that were similar to activity levels in healthy, age-matched subjects in a control group. The researchers found that treatment with the drug improved performance on a . These findings point to the therapeutic potential of reducing excess activation in the hippocampus in aMCI.

The results also have broader significance as elevated activity in the hippocampus is also observed in other conditions that are thought to precede Alzheimer's disease, and may be one of the underlying mechanisms of neurodegeneration. "Apart from a direct role in , there is concern that elevated activity in vulnerable neural networks could be causing additional damage and, possibly, widespread disease-related degeneration that underlies and the conversion to Alzheimer's disease," concludes Dr. Gallagher. "Therefore, reducing the elevated activity in the hippocampus may help to restore memory and protect the brain."

Explore further: Drug improves brain function in condition that leads to Alzheimer's

More information: Bakker et al.: "Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment.", DOI:10.1016/j.neuron.2012.03.023

Related Stories

Drug improves brain function in condition that leads to Alzheimer's

July 20, 2011
An existing anti-seizure drug improves memory and brain function in adults with a form of cognitive impairment that often leads to full-blown Alzheimer's disease, a Johns Hopkins University study has found.

Study finds older adults with mild cognitive impairment may also have some functional impairment

June 6, 2011
Difficulty remembering important dates and medications, and gathering paperwork, is more common in older individuals with mild cognitive impairment than in those with no cognition problems, according to a report in the June ...

How to tell apart the forgetful from those at risk of Alzheimer's disease

February 3, 2012
It can be difficult to distinguish between people with normal age-associated memory loss and those with amnestic mild cognitive impairment (aMCI). However people with aMCI are at a greater risk of developing Alzheimer's disease ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.