Reduction of excess brain activity improves memory in amnestic mild cognitive impairment

May 9, 2012

Research published in the May 10 issue of the journal Neuron, describes a potential new therapeutic approach for improving memory and modifying disease progression in patients with amnestic mild cognitive impairment. The study finds that excess brain activity may be doing more harm than good in some conditions that cause mild cognitive decline and memory impairment.

Elevated activity in specific parts of the hippocampus, a brain region involved in memory, is often seen in disorders associated with an increased risk for Alzheimer's disease. Amnestic (aMCI), where memory is worse than would be expected for a person's age, is one such disorder. "In the case of early aMCI, it has been suggested that the increased hippocampal activation may serve a beneficial function by recruiting additional neural resources to compensate for those that are lost," explains senior study author, Dr. Michela Gallagher, from Johns Hopkins University. "However, animal studies have raised the alternative view that this excess activation may be contributing to memory impairment."

Dr. Gallagher and colleagues tested how a reduction of hippocampal activity would impact human patients with aMCI. The researchers used a low dose of a drug used clinically to treat epilepsy, for the purpose of reducing hippocampal activity in subjects with aMCI to levels that were similar to activity levels in healthy, age-matched subjects in a control group. The researchers found that treatment with the drug improved performance on a . These findings point to the therapeutic potential of reducing excess activation in the hippocampus in aMCI.

The results also have broader significance as elevated activity in the hippocampus is also observed in other conditions that are thought to precede Alzheimer's disease, and may be one of the underlying mechanisms of neurodegeneration. "Apart from a direct role in , there is concern that elevated activity in vulnerable neural networks could be causing additional damage and, possibly, widespread disease-related degeneration that underlies and the conversion to Alzheimer's disease," concludes Dr. Gallagher. "Therefore, reducing the elevated activity in the hippocampus may help to restore memory and protect the brain."

Explore further: Drug improves brain function in condition that leads to Alzheimer's

More information: Bakker et al.: "Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment.", DOI:10.1016/j.neuron.2012.03.023

Related Stories

Drug improves brain function in condition that leads to Alzheimer's

July 20, 2011
An existing anti-seizure drug improves memory and brain function in adults with a form of cognitive impairment that often leads to full-blown Alzheimer's disease, a Johns Hopkins University study has found.

Study finds older adults with mild cognitive impairment may also have some functional impairment

June 6, 2011
Difficulty remembering important dates and medications, and gathering paperwork, is more common in older individuals with mild cognitive impairment than in those with no cognition problems, according to a report in the June ...

How to tell apart the forgetful from those at risk of Alzheimer's disease

February 3, 2012
It can be difficult to distinguish between people with normal age-associated memory loss and those with amnestic mild cognitive impairment (aMCI). However people with aMCI are at a greater risk of developing Alzheimer's disease ...

Recommended for you

Our memory shifts into high gear when we think about raising our children, new study shows

December 15, 2017
Human memory has evolved so people better recall events encountered while they are thinking about raising their offspring, according to a new study conducted by researchers at Binghamton University, State University of New ...

Offbeat brain rhythms during sleep make older adults forget

December 15, 2017
Like swinging a tennis racket during a ball toss to serve an ace, slow and speedy brainwaves during deep sleep must sync up at exactly the right moment to hit the save button on new memories, according to new UC Berkeley ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

Scientists chart how brain signals connect to neurons

December 14, 2017
Scientists at Johns Hopkins have used supercomputers to create an atomic scale map that tracks how the signaling chemical glutamate binds to a neuron in the brain. The findings, say the scientists, shed light on the dynamic ...

Activating MSc glutamatergic neurons found to cause mice to eat less

December 13, 2017
(Medical Xpress)—A trio of researchers working at the State University of New York has found that artificially stimulating neurons that exist in the medial septal complex in mouse brains caused test mice to eat less. In ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.