Computer program identifies rare mutations harbored within diverse populations of cancer cells and microorganisms

April 24, 2013
Computer program identifies rare mutations harbored within diverse populations of cancer cells and microorganisms
LoFreq detects single-nucleotide variants of E. coli bacteria with greater sensitivity than competing programs. Credit: Hemera/Thinkstock

A tumor is not a uniform mass of identical cells. However, teasing apart genetic heterogeneity within a biopsied tumor can be difficult. Researchers often fail to tell the difference between a rare variant in a DNA dataset or a small error because of imprecision in existing high-throughput sequencing technologies.

Now, a new computer program developed at A*STAR could help. Thanks to open-source software called LoFreq—so-called because it can detect mutations at extremely —researchers can reliably pick out rare subpopulations of cells from heterogeneous populations of , microorganisms and other .

"This is key to a wide range of scientific investigations, from understanding how pathogens evolve and escape the immune system, to uncovering the processes through which cancers grow and spread," says Niranjan Nagarajan, a senior scientist at the A*STAR Genome Institute of Singapore, who helped to develop the program.

Nagarajan and his co-workers wrote the algorithm that forms the foundations of LoFreq. Their aim was for the software not only to adapt to sequencing biases, but also to detect single DNA differences with frequencies below the specific level of noise introduced by sequencing errors. The researchers first tested the program against existing computer programs for analyzing large DNA datasets using simulated sequences from dengue virus. They then validated the approach using real genomic libraries from samples of (see image), human biopsies, and dengue viruses collected before and after treatment—an exposure that often leads to the evolution of in some subpopulations of virus.

"Previous attempts to describe this evolution have had to wait for the selection process to near completion," Nagarajan says. "In this new work, we have greatly increased the sensitivity of detecting these mutations and thus can catch their evolution in 'real time', observing how this process develops."

LoFreq proved itself to have near-perfect specificity for rare variants, with significantly improved sensitivity compared to existing methods, regardless of the high-throughput sequencing platform. The method also pinpointed a handful of low-frequency polymorphisms in whole-genome readouts from individual gastric cancer patients, and flagged mutational hotspots in dengue samples from a clinical drug trial.

"Almost anybody who is interested in studying evolutionary processes at a higher resolution, ranging from researchers who study how viruses and bacteria evolve and become more pathogenic, to cancer scientists looking at the evolution of a tumor," could benefit from LoFreq, Nagarajan says. The software is freely available via this link.

Explore further: LoFreq: Ultrafast detection of microbe and cancer cell mutations

More information: Wilm, A., Aw, P. P. K., Bertrand, D., Yeo, G. H. T., Ong, S. H. et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Research 40, 11189–11201 (2012).

Related Stories

LoFreq: Ultrafast detection of microbe and cancer cell mutations

March 7, 2013
Scientists at A*STAR's Genome Institute of Singapore (GIS) have developed a novel technique to precisely monitor and study the evolution of micro-organisms such as viruses and bacteria. This is an extremely important capability ...

Researchers identify four distinct mechanisms that contribute to gastric cancers

January 28, 2013
Scientists at A*STAR's Genome Institute of Singapore (GIS) headed a study that discovered four processes by which gastric cancer is formed. This is extremely important since gastric cancer is the second most common cause ...

Scientists pair blood test and gene sequencing to detect cancer

November 28, 2012
Scientists at the Johns Hopkins Kimmel Cancer Center have combined the ability to detect cancer DNA in the blood with genome sequencing technology in a test that could be used to screen for cancers, monitor cancer patients ...

Detecting tumour cells individually

May 16, 2012
(Medical Xpress) -- Swiss researchers have devised a method to detect mutations in tumor cells that are only present in a proportion of the cancer’s cells. The analysis reveals that cells of individual tumours are more ...

Single-cell sequencing leads to a new era of cancer research

March 2, 2012
BGI, the world's largest genomics organization, developed single-cell genome sequencing technology and published two research papers for cancer single-cell sequencing in the research journal Cell. In the papers, which were ...

Sequencing cancer mutations: there's an app for that

April 3, 2012
Using precise information about an individual's genetic makeup is becoming increasingly routine for developing tailored treatments for breast, lung, colon and other cancers. But techniques used to identify meaningful gene ...

Recommended for you

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.