How some trypanosomes cause sleeping sickness while others don't

May 15, 2014, Public Library of Science

Trypanosome parasites transmitted by tsetse flies cause devastating diseases in humans and livestock. Different subspecies infect different hosts: Trypanosoma brucei brucei infects cattle but is non-infectious to humans, whereas T. b. gambiense and T. b. rhodesiense cause sleeping sickness in humans. A study published on May 15th in PLOS Pathogens reveals how humans can fight off some trypanosomes but not others.

Sam Alsford, from the London School of Hygiene and Tropical Medicine, UK, and colleagues, undertook a comprehensive search for genes that make T. b. brucei sensitive to the innate (the first-line, non-specific) defenses of the . The hope is that understanding the molecular basis of sensitivity would enable the development of strategies to sensitize resistant trypanosome subspecies. And new drugs are badly needed because existing ones have serious side effects.

The researchers systematically inactivated T. b. brucei genes and looked for parasites which could survive exposure to human blood serum (factors in which can kill this subspecies, making it harmless to humans). Three genes thought to sensitize T. b. brucei to human defenses had been previously identified by other methods, and the researchers re-discovered all three—plus they found a previously unknown fourth gene in this study.

One of the known genes codes for a protein called inhibitor of cysteine peptidase (or ICP), and the researchers further analyzed its role. Using chemical and genetic approaches, they show that ICP sensitizes T. b. brucei to human serum by dampening the activity of a specific cysteine peptidase (a protein that can cut other proteins) called CATL. In the absence of ICP, CATL is fully active and can counteract components of human serum responsible for killing trypanosomes.

Discussing the findings, Alsford commented: "CATL is under consideration as a potential drug target, and our results suggest that its inactivation could indeed support the human defense system in fighting off disease-causing trypanosome strains. However, as CATL might also be involved in the generation or break-down of other factors involved in parasite-host interactions, it will be important to develop an improved understanding of the complex interplay of all of these factors in human-infective ".

The researchers also plan work on the new (fourth) gene they discovered. It codes for a protein that appears to be a so-called transmembrane channel. Studying this channel (which is likely to be involved in the uptake of human defense factors by the parasite) should further improve the understanding of the interaction between the parasite and the anti-trypanosomal components of human serum.

Explore further: Sleeping sickness by stealth

More information: Alsford S, Currier RB, Guerra-Assunc¸a˜o JA, Clark TG, Horn D (2014) Cathepsin-L Can Resist Lysis by Human Serum in Trypanosoma brucei brucei. PLoS Pathog 10(5): e1004130. DOI: 10.1371/journal.ppat.1004130

Related Stories

Sleeping sickness by stealth

February 5, 2013
(Medical Xpress)—Stealth is a well-known concept in military tactics. Almost since the invention of radar, the hunt began for counter-technologies to hide aircraft and missiles from detection – most successfully by modifying ...

New treatment for African sleeping sickness comes closer

November 6, 2013
Researchers at Umeå University have identified drugs targeting infections of the parasite Trypanosoma brucei and are thereby well on the way to find a cure against African sleeping sickness. This is the kernel of a thesis, ...

Recommended for you

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.