New treatment for African sleeping sickness comes closer

November 6, 2013

Researchers at Umeå University have identified drugs targeting infections of the parasite Trypanosoma brucei and are thereby well on the way to find a cure against African sleeping sickness. This is the kernel of a thesis, which will be publicly defended on 8 November 2013.

African (Human African trypanosomiasis) is caused by a parasite called Trypanosoma brucei. As the name of the disease indicates, it is associated with sleep disturbances but there are many other neurological complications as well. Unless the patient is treated, the illness develops in stages and leads eventually to unconsciousness and death. At present, there is no vaccine available and the medicines that exist are either very toxic or do not work effectively against all variants of the disease.

All cells have the potential to renew themselves infinitely through . During cell division, the cell replicates its DNA, which constitutes the individual's genetic material, and then allows the DNA copy to pass on to the daughter cell. During this process, there is a need for a continuous supply of four different building blocks for DNA, i.e. dATP, dCTP, dTTP and dGTP. In human cells, these DNA building blocks can either be produced by the cells themselves, or absorbed in the form of so-called (deoxynucleosides) that are present in the blood and other body fluids.

It has already been observed that the parasite's production of RNA building blocks, which resemble DNA building blocks, could be a target for drug discovery whereas the parasite's production of DNA building blocks has not been studied to the same extent. Munender Vodnala from the Department of Medical Biochemistry and Biophysics has therefore focused his study on the cellular machinery involved in the production of DNA building blocks from precursor molecules. This is considered to be a promising target for drug development against the parasite.

The production of DNA from precursor molecules is made in three stages, so-called phosphorylations. Molecular biologist Munender Vodnala has demonstrated that the enzyme adenosine kinase, which is involved in the first production stage, can be used by the parasite to produce dATP from the precursor molecule deoxyadenosine. When the parasite Trypanosoma brucei is cultivated in the presence of large amounts of deoxyadenosine, it produces high levels of dATP compared with mammalian cells. At these levels, dATP becomes toxic to the parasites and they die within just a few hours. Furthermore, Vodnala has managed to identify two modified versions of deoxyadenosine, so-called analogues of deoxyadenosine. These resemble - but are significantly more effective than - deoxyadenosine itself in killing off the parasites.

"When we used deoxyadenosine analoues to treat mice that were infected with Trypanosoma brucei, we were able to cure the infections very successfully. These results indicate that we can now move on to develop an effective treatment for African sleeping sickness," says Vodnala.

Explore further: Scientists take a step towards better sleeping sickness treatment

More information: The thesis is published at urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-80904

Related Stories

Scientists take a step towards better sleeping sickness treatment

April 25, 2012
(Medical Xpress) -- Scientists at the University of Glasgow have taken a major step forward in the quest to develop new, safer drugs for the treatment of sleeping sickness.

How a 'mistake' in a single-cell organism is actually a rewrite essential to life

October 3, 2013
A tiny but unexpected change to a segment of RNA in a single-cell organism looks a lot like a mistake, but is instead a change to the genetic information that is essential to the organism's survival.

Genetic technique brings new hope for better treatments for sleeping sickness

January 25, 2012
Research led by scientists at the London School of Hygiene & Tropical Medicine has exploited a revolutionary genetic technique to discover how human African Trypanosomiasis (HAT) drugs target the parasite which causes the ...

Gene clue to drug resistance in African sleeping sickness

June 19, 2012
(Medical Xpress) -- Researchers have identified a gene that controls susceptibility to drug treatment in Trypanosoma brucei, the parasite responsible for African sleeping sickness.

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.