Dual virtual reality/treadmill exercises promote brain plasticity in Parkinson's patients

November 28, 2017, Tel Aviv University
Dual virtual reality/treadmill exercises promote brain plasticity in Parkinson's patients

A new Tel Aviv University study suggests that a therapy that combines Virtual Reality and treadmill exercise dramatically lowers the incidence of falling among Parkinson's patients by changing the brain's behavior and promoting beneficial brain plasticity, even in patients with neurodegenerative disease.

Patients with Parkinson's disease experience gradual neuronal loss, leading to cognitive and motor impairments that damage their ability to walk and cause debilitating, often fatal, falls. The new study shows that fall rates are reduced in response to with Virtual Reality. The number of neurons activated in the pre-frontal cortex is also reduced in response to the same combination. This reduction likely reflects enhancements in motor control and greater automaticity of cognitively demanding tasks.

The research underlines the importance of combining cognitive rehabilitation with the motor rehabilitation of Parkinson's disease patients.

The study was conducted by Prof. Jeff Hausdorff of TAU's Sackler School of Medicine and Tel Aviv Medical Center along with colleagues Dr. Inbal Maidan of Tel Aviv Medical Center and Dr. Anat Mirelman and Prof. Nir Giladi, both of TAU's Sackler School of Medicine and Tel Aviv Medical Center. The findings were recently published in the journal Neurology.

"In previous research, we showed that patients with Parkinson's disease use cognitive function, which is reflected in activation of the pre-frontal cortex of the brain, to compensate for impaired motor function," Prof. Hausdorff says. "We also showed that a specific form of exercise targeting the cognitive control of gait—combined treadmill training with a Virtual Reality representation of obstacles in a path—leads to a significantly lower fall rate in Parkinson's patients.

"The Virtual Reality gait program, in which patients must avoid obstacles, enhances the patient's cognitive performance and thus reduces the requirement for prefrontal brain activity," Prof. Hausdorff continues.

Seventeen subjects in two groups, one which combined treadmill training with Virtual Reality and one which used treadmill training alone, underwent a six-week intervention, exercising three times a week for about an hour each time. The Virtual Reality group played a "game" in which they viewed their feet walking in a city or park environment. Through the game, they implicitly learned how to deal with obstacles in the virtual environment, how to plan ahead and how to do two things at once—that is, address cognitive challenges related to safe ambulation.

The other group just walked on a treadmill without the VR components or cognitive challenges. Before and after the subjects participated in the exercise programs, the researchers used functional MRI imagery to evaluate the patients' brain activation patterns.

"The study's findings reinforce the hypothesis that training improves motor and cognitive performance through improved neuroplasticity—more so than that seen with treadmill training alone," Prof. Hausdorff explains. "Interestingly, the benefits of with VR were specifically seen during walking conditions that require cognitive input (i.e., obstacle negotiation and dual tasking), conditions associated with falls in everyday environments. In these conditions, fewer neurons were needed after training with VR, while no change was seen in the group that trained by walking on a treadmill without VR."

Previous research conducted on mouse models of Parkinson's disease suggested the importance of task-specific exercises on the brain. However, the new TAU study is the first to show such findings in people with Parkinson's disease.

"Exercise that focuses on motor components promotes plasticity in brain areas associated with sensory-motor integration and coordination," Prof. Hausdorff says. "But exercise incorporating cognitive components also stimulates changes in brain regions related to cognition. It may therefore have a greater impact on compensatory brain function and the cognitive functions related to safe ambulation (i.e., walking without falling)."

"The takeaway here is that even relatively late in the disease, when 60-80 percent of dopaminergic neurons have died, there is still an opportunity to promote plasticity in the brain," Prof. Hausdorff concludes. "Moreover, to induce specific changes, exercise should be personalized and targeted to a specific clinical problem."

Explore further: Combined training may prevent falls associated with Parkinson's and other disorders

Related Stories

Combined training may prevent falls associated with Parkinson's and other disorders

November 1, 2016
A combination of virtual reality and treadmill training may prove effective in preventing dangerous falls associated with aging, Parkinson's disease, mild cognitive impairment or dementia, according to a new Tel Aviv University-Tel ...

Brain's prefrontal lobe is major player in Parkinson's Gait

August 10, 2016
A new study by Tel Aviv University researchers demonstrates that the prefrontal cortex, the part of the brain associated with cognitive functions, plays a major role in "Parkinson's Gait." It suggests a radically new understanding ...

Virtual reality and treadmill training could help prevent falls in older adults

August 12, 2016
Combining virtual reality and treadmill training helps prevent falls in older adults better than treadmill training alone, according to a new randomised controlled trial published in The Lancet. The authors say that the intervention, ...

Exercise/memory research for Parkinson's

December 12, 2011
Researchers from the University of Maryland School of Medicine and the Baltimore VA Medical Center have launched a study of exercise and computerized memory training to see if those activities may help people with Parkinson's ...

Mind-body maximizes benefits of exercise to seniors

August 4, 2017
By 2035, a third of the Canadian population will be over 60 years old. And Kinesiology PhD student Nárlon Boa Sorte Silva wants to make sure every one of them stays active and engaged in life via exercise.

Recommended for you

New technique helps uncover changes in ALS neurons

June 22, 2018
Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study ...

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Watching stem cells repair spinal cord in real time

June 22, 2018
Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.