Neuroscience

Brain fingerprints help doctors detect neurological disease

An EPFL scientist has found that brain fingerprints—or maps of the neural connections within our brain—can be used to detect a decline in cognitive ability. That's because the fingerprints are harder to detect in people ...

Neuroscience

Tiny wireless device illuminates neuron activity in the brain

Everything that happens in the brain is a result of neurons sending and receiving signals in complex networks that are not completely understood by scientists. These networks are what allow us to pick up a cup of coffee, ...

Health

High percentage of positive portrayals of vaping on TikTok

Positive portrayals of e-cigarettes and vaping are freely available without any age restrictions on TikTok—the video sharing platform—and have been viewed many times, finds research published online in the journal Tobacco ...

Psychology & Psychiatry

Biomarker could help diagnosis schizophrenia at an early age

Scientists at Sanford Burnham Prebys have discovered how levels of a protein could be used in the future as a blood-based diagnostic aid for schizophrenia. The activity of the protein, which is found in both the brain and ...

page 1 from 40

Brain

The brain is the center of the nervous system in all vertebrate, and most invertebrate, animals. Some primitive animals such as jellyfish and starfish have a decentralized nervous system without a brain, while sponges lack any nervous system at all. In vertebrates, the brain is located in the head, protected by the skull and close to the primary sensory apparatus of vision, hearing, balance, taste, and smell.

Brains can be extremely complex. The cerebral cortex of the human brain contains roughly 15-33 billion neurons depending on gender and age, linked with up to 10,000 synaptic connections each. Each cubic millimeter of cerebral cortex contains roughly one billion synapses. These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body and target them to specific recipient cells.

The most important biological function of the brain is to generate behaviors that promote the welfare of an animal. Brains control behavior either by activating muscles, or by causing secretion of chemicals such as hormones. Even single-celled organisms may be capable of extracting information from the environment and acting in response to it. Sponges, which lack a central nervous system, are capable of coordinated body contractions and even locomotion. In vertebrates, the spinal cord by itself contains neural circuitry capable of generating reflex responses as well as simple motor patterns such as swimming or walking. However, sophisticated control of behavior on the basis of complex sensory input requires the information-integrating capabilities of a centralized brain.

Despite rapid scientific progress, much about how brains work remains a mystery. The operations of individual neurons and synapses are now understood in considerable detail, but the way they cooperate in ensembles of thousands or millions has been very difficult to decipher. Methods of observation such as EEG recording and functional brain imaging tell us that brain operations are highly organized, but these methods do not have the resolution to reveal the activity of individual neurons.

This text uses material from Wikipedia, licensed under CC BY-SA