January 7, 2019

This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

PAC1R mutation may be linked to severity of social deficits in autism

Joshua G. Corbin, Ph.D., interim director of the Center for Neuroscience Research at Children's National Health System and the study's co-senior author. Credit: Children's National Health System
× close
Joshua G. Corbin, Ph.D., interim director of the Center for Neuroscience Research at Children's National Health System and the study's co-senior author. Credit: Children's National Health System

A mutation of the gene PAC1R may be linked to the severity of social deficits experienced by kids with autism spectrum disorder (ASD), finds a study from a multi-institutional research team led by Children's faculty. If the pilot findings are corroborated in larger, multi-center studies, the research published online Dec. 17, 2018, in Autism Research represents the first step toward identifying a potential novel biomarker to guide interventions and better predict outcomes for children with autism.

As many as 1 in 40 children are affected by ASD. Symptoms of the disorder—such as not making eye contact, not responding to one's name when called, an inability to follow a conversation of more than one speaker or incessantly repeating certain words or phrases—usually crop up by the time a child turns 3.

The developmental disorder is believed to be linked, in part, to disrupted circuitry within the amygdala, a structure integral for processing social-emotional information. This study reveals that PAC1R is expressed during key periods of brain development when the amygdala—an almond-shaped cluster of neurons—develops and matures. A properly functioning amygdala, along with brain structures like the prefrontal cortex and cerebellum, are crucial to neurotypical social-emotional processing.

"Our study suggests that an individual with autism who is carrying a mutation in PAC1R may have a greater chance of more severe social problems and disrupted functional brain connectivity with the amygdala," says Joshua G. Corbin, Ph.D., interim director of the Center for Neuroscience Research at Children's National Health System and the study's co-senior author. "Our study is one important step along the pathway to developing new biomarkers for and, hopefully, predicting patients' outcomes."

The research team's insights came through investigating multiple lines of evidence:

All told, the project is the fruit of six years of painstaking research and data collection, say the researchers. That includes banking patients' saliva samples collected during clinical visits for future retrospective analyses to determine which genetic mutations were correlated with behavioral and functional brain deficits, Corbin adds.

"Lauren Kenworthy, who directs our Center for Autism Spectrum Disorders, and I have been talking over the years about how we could bring our programs together. We homed in on this project to look at about a dozen genes to assess correlations and brought in experts from genetics and genomics at Children's National to sequence genes of interest," he adds. "Linking the bench to bedside is especially difficult in neuroscience. It takes a huge amount of effort and dozens of discussions, and it's very rare. It's an exemplar of what we strive for."

More information: Meredith Goodrich et al, PAC1R Genotype to Phenotype Correlations in Autism Spectrum Disorder, Autism Research (2018). DOI: 10.1002/aur.2051

Journal information: Autism Research

Load comments (0)