Designed biomaterials mimicking biology: Potential scaffold for muscle regeneration

May 5, 2010, Virginia Tech

Engineered artificial proteins that mimic the elastic properties of muscles in living organisms are the subject of an article in Nature magazine to be released May 6.

"Our goal is to use these in as a type of scaffold for muscle regeneration," said co-author Dan Dudek, an assistant professor of engineering science and mechanics (ESM) at Virginia Tech.

The work was conducted when Dudek was a postdoctoral fellow at the University of British Columbia's Department of Zoology where he worked with the lead author Hongbin Li of the University of British Columbia's Department of Chemistry.

According to the Nature press release on the article, "This work represents a step forward in the design at the single-molecule level of potentially useful biomaterials."

The team engineered a synthetic protein to reproduce the of titin, the "that largely governs the elastic properties of muscle," according to the Nature article. The researchers tested the nanomechanical properties of the new proteins at the single-molecule level and then cross-linked them into a solid rubber-like material.

The authors wrote that synthetic biomaterials display the unique multifunctional characteristics of titin, acting like a spring with high resilience at low strain and as a shock-absorb at high strains. Dudek added that this is "a nice feat when the material at a high strain releases stress instead of tearing apart. The material's spring-like properties are fully recoverable."

Under normal biological circumstances, injuries causing tissue tears larger than a centimeter will not reconnect on their own, Dudek said. The newly designed biomaterial could help in the by acting as a tough yet extensible scaffold, allowing new tissue to grow across the gap.

The new biomaterial is biodegradable. "You only want the scaffold to exist as long as necessary, and then dissolve itself, leaving no side effects," Dudek said.

Producing the synthetic protein is as easy as growing bacteria, but then it must be purified. The expense comes when generating large quantities, Dudek said. "Our next step will be to see if, on the engineering side, we can make use of this in the scaffold matrix."

Related Stories

Recommended for you

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.