New device could allow your heartbeat to power pacemaker

November 4, 2012, American Heart Association

An experimental device converted energy from a beating heart to provide enough electricity to power a pacemaker, in a study presented at the American Heart Association's Scientific Sessions 2012.

The findings suggest that patients could power their pacemakers—eliminating the need for replacements when batteries are spent.

In a preliminary study, researchers tested an energy-harvesting device that uses piezoelectricity—electrical charge generated from motion. The approach is a promising technological solution for pacemakers, because they require only small amounts of power to operate, said M. Amin Karami, Ph.D., lead author of the study and research fellow in the Department of at the University of Michigan in Ann Arbor.

might also power other implantable cardiac devices like defibrillators, which also have needs, he said.

Today's pacemakers must be replaced every five to seven years when their batteries run out, which is costly and inconvenient, Karami said.

"Many of the patients are children who live with pacemakers for many years," he said. "You can imagine how many operations they are spared if this new technology is implemented."

Researchers measured heartbeat-induced vibrations in the chest. Then, they used a "shaker" to reproduce the vibrations in the laboratory and connected it to a prototype cardiac energy harvester they developed. Measurements of the prototype's performance, based on sets of 100 simulated heartbeats at various heart rates, showed the energy harvester performed as the scientists had predicted—generating more than 10 times the power than modern pacemakers require. The next step will be implanting the , which is about half the size of batteries now used in pacemakers, Karami said. Researchers hope to integrate their technology into commercial pacemakers.

Two types of energy harvesters can power a typical pacemaker: linear and nonlinear. Linear harvesters work well only at a specific heart rate, so heart rate changes prevent them from harvesting enough power.

In contrast, a nonlinear harvester—the type used in the study—uses magnets to enhance power production and make the harvester less sensitive to changes. The nonlinear harvester generated enough power from heartbeats ranging from 20 to 600 beats per minute to continuously power a pacemaker. Devices such as cell phones or microwave ovens would not affect the nonlinear device, Karami said.

Explore further: Heart-powered pacemaker could one day eliminate battery-replacement surgery

Related Stories

Heart-powered pacemaker could one day eliminate battery-replacement surgery

March 2, 2012
A new power scheme for cardiac pacemakers turns to an unlikely source: vibrations from heartbeats themselves.

Recommended for you

Starting periods before age of 12 linked to heightened risk of heart disease and stroke

January 15, 2018
Starting periods early—before the age of 12—is linked to a heightened risk of heart disease and stroke in later life, suggests an analysis of data from the UK Biobank study, published online in the journal Heart.

'Decorated' stem cells could offer targeted heart repair

January 10, 2018
Although cardiac stem cell therapy is a promising treatment for heart attack patients, directing the cells to the site of an injury - and getting them to stay there - remains challenging. In a new pilot study using an animal ...

Two simple tests could help to pinpoint cause of stroke

January 10, 2018
Detecting the cause of the deadliest form of stroke could be improved by a simple blood test added alongside a routine brain scan, research suggests.

Exercise is good for the heart, high blood pressure is bad—researchers find out why

January 10, 2018
When the heart is put under stress during exercise, it is considered healthy. Yet stress due to high blood pressure is bad for the heart. Why? And is this always the case? Researchers of the German Centre for Cardiovascular ...

Heart-muscle patches made with human cells improve heart attack recovery

January 10, 2018
Large, human cardiac-muscle patches created in the lab have been tested, for the first time, on large animals in a heart attack model. This clinically relevant approach showed that the patches significantly improved recovery ...

Place of residence linked to heart failure risk

January 9, 2018
Location. Location. Location.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.