Researchers discover two-step process to thwart cancer cells

February 2, 2018 by Julie Stewart, University of Delaware
Electron microscopic image of a single human lymphocyte. Credit: Dr. Triche National Cancer Institute

Scientists at the University of Delaware and the University of Illinois at Chicago have found a new way to kill liver cancer cells and inhibit tumor growth. First, they silence a key cellular enzyme, and then they add a powerful drug. They describe their methods in a new paper published in Nature Communications.

This research could accelerate the development of new treatments for , which is currently difficult to cure. Often surgery is not an option for liver cancer, and the available drugs are only modestly effective. More than 82 percent of liver cancer patients die within five years of diagnosis, according to the National Institutes of Health.

Manipulating cells to kill cancer

This project originated in labs at the University of Illinois at Chicago, where researchers grew liver and manipulated their expression of an enzyme called hexokinase-2. Then, the were treated with metformin, a diabetes drug that decreases glucose production in the liver.

The research group of Maciek R. Antoniewicz, Centennial Professor of Chemical and Biomolecular Engineering at the University of Delaware, designed a set of experiments to measure how cancer cells respond to the loss of hexokinase-2, an enzyme that helps cells metabolize glucose, their food source.

Antoniewicz is an expert in metabolic flux analysis, a technique for studying metabolism in biological systems. His research group is one of only a few in the world with expertise in a technique called 13C metabolic flux analysis of cancer cells, and he recently published a paper in Experimental & Molecular Medicine describing his methods.

"The complexities of mammalian metabolism require a systems-level analysis of the underlying networks and phenotypes, and this is what my lab specializes in," he said.

The UD cohort used mass spectrometry to analyze the cancer cells and then determined intracellular metabolic fluxes for cells with and without hexokinase-2. They suspected that cells deprived of hexokinase-2 would starve and die, but surprisingly, they found that targeting hexokinase-2 alone had only a marginal impact on stopping . Another weapon, metformin, was needed to complete the job.

"The importance of our paper is that we show that targeting hexokinase-2 can indeed be a successful strategy for cancer therapy, when you also target a second compensatory mechanism with the drug metformin," said Antoniewicz.

His work provided important clues to what this second target should be, providing fertile ground for the next phase of research.

Finally, the research team at the University of Illinois at Chicago tested a combination of hexokinase-2 depletion and sorafenib, a liver cancer drug, on tumors in mice. This combo worked better than either treatment alone.

Explore further: Blocking key enzyme in cancer cells could lead to new therapy

More information: Dannielle DeWaal et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin, Nature Communications (2018). DOI: 10.1038/s41467-017-02733-4

Related Stories

Blocking key enzyme in cancer cells could lead to new therapy

August 1, 2013
Researchers from the University of Illinois at Chicago College of Medicine have identified a characteristic unique to cancer cells in an animal model of cancer—and they believe it could be exploited as a target to develop ...

Starving cancer cells by blocking their metabolism

June 14, 2016
Scientists at EPFL have found a way to starve liver cancer cells by blocking a protein that is required for glutamine breakdown—while leaving normal cells intact. The discovery opens new ways to treat liver cancer.

Diabetes drug metformin inhibits multidrug-resistant breast cancer

December 6, 2017
The drug metformin, typically prescribed to treat type 2 diabetes, keeps breast cancer cells from developing multiple drug resistance (MDR) and can reverse MDR after it¹s appeared, according to a study published December ...

VCP protein inhibitor found to help virus kill liver tumors

August 24, 2017
(Medical Xpress)—A team of researchers with members from several institutions in China has found that combining a VCP protein inhibitor with a virus that naturally targets liver cancer tumors made the virus much more potent. ...

Recommended for you

Single-cell study in a childhood brain tumor affirms the importance of context

April 20, 2018
In defining the cellular context of diffuse midline gliomas, researchers find the cells fueling their growth and suggest a potential approach to treating them: forcing their cells to be more mature.

Aggressive breast cancer already has resistant tumour cells prior to chemotherapy

April 20, 2018
Difficult to treat and aggressive "triple-negative" breast cancer is chemoresistant even before chemotherapy begins, a new study by researchers from Karolinska Institutet and the University of Texas MD Anderson Cancer Center ...

Mechanism that drives development of liver cancer brought on by non-alcoholic fatty liver disease discovered

April 19, 2018
A team of researchers from several institutions in China has found a mechanism that appears to drive the development of a type of liver cancer not caused by alcohol consumption. In their paper published in the journal Science ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Scientists identify 170 potential lung cancer drug targets using unique cellular library

April 19, 2018
After testing more than 200,000 chemical compounds, UT Southwestern's Simmons Cancer Center researchers have identified 170 chemicals that are potential candidates for development into drug therapies for lung cancer.

Chip-based blood test for multiple myeloma could make bone biopsies a relic of the past

April 19, 2018
The diagnosis and treatment of multiple myeloma, a cancer affecting plasma cells, traditionally forces patients to suffer through a painful bone biopsy. During that procedure, doctors insert a bone-biopsy needle through an ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.