Metastatic 'switch' could lead to cancer therapies

by Anne Ju

(Medical Xpress)—What kills cancer patients often isn't the primary tumor; it's when the tumor metastasizes—or spreads the cancer to other areas of the body.

Focusing on colorectal cancer, a leading cause of worldwide, a multidisciplinary research team has shed new light on how these metastasize by identifying a key chemical signaling factor that triggers the process.

What's more, they have engineered a low-cost, surgery-free genetic "switch" that turns metastatic behavior of colorectal cancer cells on and off, allowing for easy, repeatable study of this process.

The research is detailed in the , published Sept. 4, and was led by Huanhuan Joyce Chen, a graduate student under Xiling Shen, assistant professor of electrical and computer engineering and a field member of biomedical engineering. Shen is a co-author with Steven Lipkin, associate professor of medicine at Weill Cornell Medical College. The work was also highlighted online by the company Qiagen.

The researchers found that particular signaling mechanisms called chemokines induce metastasis of colorectal cancer cells. Chemokines are "motility factors" because they help cells move throughout the body. They are known, for example, to be important in the body's immunoresponse, which requires to travel quickly to areas of inflammation or infection.

The researchers established a link between a particular chemokine receptor, called CCR9, and its chemokine CCL25, to the metastatic behavior of colorectal cancer cells. Normal expression of these chemokines keeps the cancer cells in the gut, but once the cells lose CCR9 expression, they can spread. In other words, cancer cells hijack the signaling mechanism.

This discovery in itself, Shen said, could form the basis for targeted anti-metastatic therapies.

A barrier to , however, is the lack of good animal models to test therapies, Shen said, and human clinical trials often fail as a result.

So Chen used her engineering background to take things a step further: She made a mouse with a CCL25 and CCR-9 metastatic "switch" that could be turned on and off after cancer cells were injected into the mouse. At first, the cells expressed the CCR9 receptor, and the tumor only formed in the gut. Turning off the switch made the cells lose the signaling mechanism, and metastasis occurred.

This switch could eliminate the traditional way scientists study metastasis: expensive, low-throughput surgical implantation of metastasized cancer cells. With the switch, metastasis can be studied and repeated by a simple injection of colorectal cancer cells.

Related Stories

New signaling pathway linked to breast cancer metastasis

Apr 02, 2012

Lymph nodes help to fight off infections by producing immune cells and filtering foreign materials from the body, such as bacteria or cancer cells. Thus, one of the first places that cancer cells are found when they leave ...

How tumor cells create their own pathways

Jul 10, 2012

Metastasis occurs when tumor cells "migrate" to other organs through the bloodstream. Scientists have now discovered the trick tumor cells use to invade tissue from the blood vessels: They produce signaling ...

Tracking breast cancer cells on the move

Jun 14, 2012

Breast cancer cells frequently move from their primary site and invade bone, decreasing a patient's chance of survival. This process of metastasis is complex, and factors both within the breast cancer cells and within the ...

Recommended for you

Discovery could lead to new cancer treatment

11 hours ago

A team of scientists from the University of Colorado School of Medicine has reported the breakthrough discovery of a process to expand production of stem cells used to treat cancer patients. These findings could have implications ...

Is the HPV vaccine necessary?

17 hours ago

As the school year starts in full swing many parents wonder if their child should receive the HPV vaccine, which is recommended for girls ages 11-26 and boys 11-21. There are a lot of questions and controversy around this ...

User comments