Metastatic 'switch' could lead to cancer therapies

September 11, 2012 by Anne Ju

(Medical Xpress)—What kills cancer patients often isn't the primary tumor; it's when the tumor metastasizes—or spreads the cancer to other areas of the body.

Focusing on colorectal cancer, a leading cause of worldwide, a multidisciplinary research team has shed new light on how these metastasize by identifying a key chemical signaling factor that triggers the process.

What's more, they have engineered a low-cost, surgery-free genetic "switch" that turns metastatic behavior of colorectal cancer cells on and off, allowing for easy, repeatable study of this process.

The research is detailed in the , published Sept. 4, and was led by Huanhuan Joyce Chen, a graduate student under Xiling Shen, assistant professor of electrical and computer engineering and a field member of biomedical engineering. Shen is a co-author with Steven Lipkin, associate professor of medicine at Weill Cornell Medical College. The work was also highlighted online by the company Qiagen.

The researchers found that particular signaling mechanisms called chemokines induce metastasis of colorectal cancer cells. Chemokines are "motility factors" because they help cells move throughout the body. They are known, for example, to be important in the body's immunoresponse, which requires to travel quickly to areas of inflammation or infection.

The researchers established a link between a particular chemokine receptor, called CCR9, and its chemokine CCL25, to the metastatic behavior of colorectal cancer cells. Normal expression of these chemokines keeps the cancer cells in the gut, but once the cells lose CCR9 expression, they can spread. In other words, cancer cells hijack the signaling mechanism.

This discovery in itself, Shen said, could form the basis for targeted anti-metastatic therapies.

A barrier to , however, is the lack of good animal models to test therapies, Shen said, and human clinical trials often fail as a result.

So Chen used her engineering background to take things a step further: She made a mouse with a CCL25 and CCR-9 metastatic "switch" that could be turned on and off after cancer cells were injected into the mouse. At first, the cells expressed the CCR9 receptor, and the tumor only formed in the gut. Turning off the switch made the cells lose the signaling mechanism, and metastasis occurred.

This switch could eliminate the traditional way scientists study metastasis: expensive, low-throughput surgical implantation of metastasized cancer cells. With the switch, metastasis can be studied and repeated by a simple injection of colorectal cancer cells.

Explore further: New signaling pathway linked to breast cancer metastasis

Related Stories

New signaling pathway linked to breast cancer metastasis

April 2, 2012
Lymph nodes help to fight off infections by producing immune cells and filtering foreign materials from the body, such as bacteria or cancer cells. Thus, one of the first places that cancer cells are found when they leave ...

How tumor cells create their own pathways

July 10, 2012
Metastasis occurs when tumor cells "migrate" to other organs through the bloodstream. Scientists have now discovered the trick tumor cells use to invade tissue from the blood vessels: They produce signaling proteins to make ...

Crucial molecule that involved in spread of breast cancer found

June 8, 2011
Researchers at Albert Einstein College of Medicine of Yeshiva University have identified a key player in the spread of breast cancer. The findings, published today in the online edition of Nature, identify a critical molecule ...

Researchers discover protein that could help prevent the spread of cancer

May 4, 2011
A protein capable of halting the spread of breast cancer cells could lead to a therapy for preventing or limiting the spread of the disease.

Recommended for you

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

Microbiologists contribute to possible new anti-TB treatment path

October 23, 2017
As part of the long effort to improve treatment of tuberculosis (TB), microbiologists led by Yasu Morita at the University of Massachusetts Amherst report that they have for the first time characterized a protein involved ...

New study shows how cells can be led down non-cancer path

October 23, 2017
As cells with a propensity for cancer break down food for energy, they reach a fork in the road: They can either continue energy production as healthy cells, or shift to the energy production profile of cancer cells. In a ...

Proton therapy lowers treatment side effects in pediatric head and neck cancer patients

October 23, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional photon radiation, and it will result in similar outcomes with less impact on quality of life. Researchers from ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.