Study shows how dietary supplement may block cancer cells

June 29, 2010

Researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) have discovered how a substance that is produced when eating broccoli and Brussels sprouts can block the proliferation of cancer cells.

Compelling evidence indicates that the substance, indole-3-carbinol (I3C), may have anticancer effects and other health benefits, the researchers say. These findings show how I3C affects cancer cells and normal cells.

The laboratory and animal study discovered a connection between I3C and a molecule called Cdc25A, which is essential for cell division and proliferation. The research showed that I3C causes the destruction of that molecule and thereby blocks the growth of .

The study was published online June 29 in the journal Cancer Prevention Research.

"Cdc25A is present at abnormally high levels in about half of breast cancer cases, and it is associated with a poor prognosis," says study leader Xianghong Zou, assistant professor of pathology at the Ohio State University Medical Center.

The molecule also occurs at abnormally high levels in cancers of the breast, prostate, liver, esophagus, endometrium and colon, and in , and in other diseases such as Alzheimer's disease, he noted.

"For this reason, a number of anti-Cdc25 agents have been identified, but they have not been successful for cancer prevention or treatment due to concerns about their safety or efficacy," says Zou, who is also a member of the OSUCCC-James Molecular Carcinogenesis and Chemoprevention program.

"I3C can have striking effects on ," he explains, "and a better understanding of this mechanism may lead to the use of this dietary supplement as an effective and safe strategy for treating a variety of cancers and other human diseases associated with the overexpression of Cdc25A," Zou says.

For this study, Zou and his colleagues exposed three cell lines to I3C. These experiments revealed that the substance caused the destruction of Cdc25A. They also pinpointed a specific location on that molecule that made it susceptible to I3C, showing that if that location is altered (because of a gene mutation), I3C no longer causes the molecule's destruction.

Last, the investigators tested the effectiveness of I3C in breast tumors in a mouse model. When the substance was given orally to the mice, it reduced tumor size by up to 65 percent. They also showed that I3C had no affect on breast-cell tumors in which the Cdc25A molecule had a mutation in that key location.

Related Stories

Recommended for you

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

'Labyrinth' chip could help monitor aggressive cancer stem cells

September 21, 2017
Inspired by the Labyrinth of Greek mythology, a new chip etched with fluid channels sends blood samples through a hydrodynamic maze to separate out rare circulating cancer cells into a relatively clean stream for analysis. ...

Whole food diet may help prevent colon cancer, other chronic conditions

September 21, 2017
A diet that includes plenty of colorful vegetables and fruits may contain compounds that can stop colon cancer and inflammatory bowel diseases in pigs, according to an international team of researchers. Understanding how ...

Drug combination may improve impact of immunotherapy in head and neck cancer

September 21, 2017
Checkpoint inhibitor-based immunotherapy has been shown to be very effective in recurrent and metastatic head and neck cancer but only in a minority of patients. University of California San Diego School of Medicine researchers ...

New kinase detection method helps identify targets for developing cancer drugs

September 21, 2017
Purdue University researchers have developed a high-throughput method for matching kinases to the proteins they phosphorylate, speeding the ability to identify multiple potential cancer drug targets.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.