Study shows how dietary supplement may block cancer cells

June 29, 2010, The Ohio State University

Researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) have discovered how a substance that is produced when eating broccoli and Brussels sprouts can block the proliferation of cancer cells.

Compelling evidence indicates that the substance, indole-3-carbinol (I3C), may have anticancer effects and other health benefits, the researchers say. These findings show how I3C affects cancer cells and normal cells.

The laboratory and animal study discovered a connection between I3C and a molecule called Cdc25A, which is essential for cell division and proliferation. The research showed that I3C causes the destruction of that molecule and thereby blocks the growth of .

The study was published online June 29 in the journal Cancer Prevention Research.

"Cdc25A is present at abnormally high levels in about half of breast cancer cases, and it is associated with a poor prognosis," says study leader Xianghong Zou, assistant professor of pathology at the Ohio State University Medical Center.

The molecule also occurs at abnormally high levels in cancers of the breast, prostate, liver, esophagus, endometrium and colon, and in , and in other diseases such as Alzheimer's disease, he noted.

"For this reason, a number of anti-Cdc25 agents have been identified, but they have not been successful for cancer prevention or treatment due to concerns about their safety or efficacy," says Zou, who is also a member of the OSUCCC-James Molecular Carcinogenesis and Chemoprevention program.

"I3C can have striking effects on ," he explains, "and a better understanding of this mechanism may lead to the use of this dietary supplement as an effective and safe strategy for treating a variety of cancers and other human diseases associated with the overexpression of Cdc25A," Zou says.

For this study, Zou and his colleagues exposed three cell lines to I3C. These experiments revealed that the substance caused the destruction of Cdc25A. They also pinpointed a specific location on that molecule that made it susceptible to I3C, showing that if that location is altered (because of a gene mutation), I3C no longer causes the molecule's destruction.

Last, the investigators tested the effectiveness of I3C in breast tumors in a mouse model. When the substance was given orally to the mice, it reduced tumor size by up to 65 percent. They also showed that I3C had no affect on breast-cell tumors in which the Cdc25A molecule had a mutation in that key location.

Related Stories

Recommended for you

Single-cell study in a childhood brain tumor affirms the importance of context

April 20, 2018
In defining the cellular context of diffuse midline gliomas, researchers find the cells fueling their growth and suggest a potential approach to treating them: forcing their cells to be more mature.

Aggressive breast cancer already has resistant tumour cells prior to chemotherapy

April 20, 2018
Difficult to treat and aggressive "triple-negative" breast cancer is chemoresistant even before chemotherapy begins, a new study by researchers from Karolinska Institutet and the University of Texas MD Anderson Cancer Center ...

Mechanism that drives development of liver cancer brought on by non-alcoholic fatty liver disease discovered

April 19, 2018
A team of researchers from several institutions in China has found a mechanism that appears to drive the development of a type of liver cancer not caused by alcohol consumption. In their paper published in the journal Science ...

Discovery adds to evidence that some children are predisposed to develop leukemia

April 19, 2018
St. Jude Children's Research Hospital researchers have made a discovery that expands the list of genes to include when screening individuals for possible increased susceptibility to childhood leukemia. The finding is reported ...

Scientists identify 170 potential lung cancer drug targets using unique cellular library

April 19, 2018
After testing more than 200,000 chemical compounds, UT Southwestern's Simmons Cancer Center researchers have identified 170 chemicals that are potential candidates for development into drug therapies for lung cancer.

Chip-based blood test for multiple myeloma could make bone biopsies a relic of the past

April 19, 2018
The diagnosis and treatment of multiple myeloma, a cancer affecting plasma cells, traditionally forces patients to suffer through a painful bone biopsy. During that procedure, doctors insert a bone-biopsy needle through an ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.