Study shows how dietary supplement may block cancer cells

June 29, 2010, The Ohio State University

Researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC-James) have discovered how a substance that is produced when eating broccoli and Brussels sprouts can block the proliferation of cancer cells.

Compelling evidence indicates that the substance, indole-3-carbinol (I3C), may have anticancer effects and other health benefits, the researchers say. These findings show how I3C affects cancer cells and normal cells.

The laboratory and animal study discovered a connection between I3C and a molecule called Cdc25A, which is essential for cell division and proliferation. The research showed that I3C causes the destruction of that molecule and thereby blocks the growth of .

The study was published online June 29 in the journal Cancer Prevention Research.

"Cdc25A is present at abnormally high levels in about half of breast cancer cases, and it is associated with a poor prognosis," says study leader Xianghong Zou, assistant professor of pathology at the Ohio State University Medical Center.

The molecule also occurs at abnormally high levels in cancers of the breast, prostate, liver, esophagus, endometrium and colon, and in , and in other diseases such as Alzheimer's disease, he noted.

"For this reason, a number of anti-Cdc25 agents have been identified, but they have not been successful for cancer prevention or treatment due to concerns about their safety or efficacy," says Zou, who is also a member of the OSUCCC-James Molecular Carcinogenesis and Chemoprevention program.

"I3C can have striking effects on ," he explains, "and a better understanding of this mechanism may lead to the use of this dietary supplement as an effective and safe strategy for treating a variety of cancers and other human diseases associated with the overexpression of Cdc25A," Zou says.

For this study, Zou and his colleagues exposed three cell lines to I3C. These experiments revealed that the substance caused the destruction of Cdc25A. They also pinpointed a specific location on that molecule that made it susceptible to I3C, showing that if that location is altered (because of a gene mutation), I3C no longer causes the molecule's destruction.

Last, the investigators tested the effectiveness of I3C in breast tumors in a mouse model. When the substance was given orally to the mice, it reduced tumor size by up to 65 percent. They also showed that I3C had no affect on breast-cell tumors in which the Cdc25A molecule had a mutation in that key location.

Related Stories

Recommended for you

Pregnant? Eating broccoli sprouts may reduce child's chances of breast cancer later in life

August 16, 2018
Researchers at the University of Alabama at Birmingham have found that a plant-based diet is more effective in preventing breast cancer later in life for the child if the mother consumed broccoli while pregnant. The 2018 ...

PARP inhibitor improves progression-free survival in patients with advanced breast cancers

August 15, 2018
In a randomized, Phase III trial led by researchers at The University of Texas MD Anderson Cancer Center, the PARP inhibitor talazoparib extended progression-free survival (PFS) and improved quality-of-life measures over ...

Scientists discover chemical which can kill glioblastoma cells

August 15, 2018
Aggressive brain tumour cells taken from patients self-destructed after being exposed to a chemical in laboratory tests, researchers have shown.

Three scientists share $500,000 prize for work on cancer therapy

August 15, 2018
Tumors once considered untreatable have disappeared and people previously given months to live are surviving for decades thanks to new therapies emerging from the work of three scientists chosen to receive a $500,000 medical ...

New clues into how 'trash bag of the cell' traps and seals off waste

August 15, 2018
The mechanics behind how an important process within the cell traps material before recycling it has puzzled scientists for years. But Penn State researchers have gained new insight into how this process seals off waste, ...

RUNX proteins act as regulators in DNA repair, study finds

August 15, 2018
A study by researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore has revealed that RUNX proteins are integral to efficient DNA repair via the Fanconi Anemia (FA) ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.