Study links molecule to muscle maturation, muscle cancer

December 30, 2008
Study links molecule to muscle maturation, muscle cancer
Denis C. Guttridge, a researcher with Ohio State University's human cancer genetics program. Credit: Ohio State University Medical Center

Researchers at The Ohio State University Comprehensive Cancer Center have discovered that a molecule implicated in leukemia and lung cancer is also important in muscle repair and in a muscle cancer that strikes mainly children.

The study shows that immature muscle cells require the molecule, called miR-29, to become mature, and that the molecule is nearly missing in cells from rhabdomyosarcoma, a cancer caused by the proliferation of immature muscle cells.

Cells from human rhabdomyosarcoma tumors showed levels of the molecule that were 10 percent or less of those in normal muscle cells. Artificially raising the level of the molecule in the cancer cells cut their growth by half and caused them to begin maturing, slowing down tumor growth.

MiR-29 is a type of microRNA, a family of molecules that helps regulate the proteins cells produce. Researchers say this study is unusual because it also sheds light on the how a microRNA itself is regulated.

"This study shows that there is a connection between this microRNA, muscle development and rhabdomyosarcoma," says principal investigator Denis C. Guttridge, associate professor of molecular virology, immunology and medical genetics and a researcher with Ohio State's human cancer genetics program.

"The findings should give us a better understanding of muscle repair and development, and of rhabdomyosarcoma, and could lead to new treatments for this and other muscle diseases," he says.

The study is published in a recent issue of the journal Cancer Cell.

Guttridge and his colleagues discovered that the gene for miR-29 is silenced by the action of a protein, called NF-B (pronounced, NF kappa B). Their study shows that this protein is present at high levels in rhabdomyosarcoma cells, and that this keeps miR-29 shut off, preventing muscle progenitor cells from maturing.

When they raised the level of the microRNA molecule in the cells, or lowered the level of the NF-B protein, the cells' growth rate dropped two fold, and they began taking on the appearance of mature muscle cells. The modified cells also formed significantly smaller tumors when transplanted into an animal model than did typical rhabdomyosarcoma cells.

"High levels of the protein silence miR-29, which blocks differentiation, causing muscle cells to remain immature. If we can restore the levels of miR-29 in patients," Guttridge says, "it might provide a new therapy for this childhood cancer and perhaps other muscle diseases."

Source: Ohio State University Medical Center

Explore further: Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

Related Stories

Working around spinal injuries: Rehabilitation, drug treatment lets rats recover some involuntary movement

July 24, 2017
A new study in rats shows that changes in the brain after spinal cord injury are necessary to restore at least some function to lower limbs. The work was published recently in the journal eLife.

Engineers invent the first bio-compatible, ion current battery

July 24, 2017
Engineers at the University of Maryland have invented an entirely new kind of battery. It is bio-compatible because it produces the same kind of ion-based electrical energy used by humans and other living things.

Amyotrophic lateral sclerosis: New clues to the cause and how future drugs might reverse disease

July 19, 2017
Scientists have long known that a protein called TDP-43 clumps together in brain cells of people with amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's Disease, and is associated with neuron death. This same ...

Wireless magnetic fields and actuator 'muscles' allow folding robots to move without batteries

July 19, 2017
The traditional Japanese art of origami transforms a simple sheet of paper into complex, three-dimensional shapes through a very specific pattern of folds, creases, and crimps. Folding robots based on that principle have ...

Heart tissues of different origins can 'beat' in sync

July 19, 2017
Researchers from MIPT and the University of Bonn have shown that heart tissues of different origins can contract in sync. In a series of experiments, they first merged two rat tissues of different ages and then combined rat ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Recommended for you

Stem cell therapy attacks cancer by targeting unique tissue stiffness

July 26, 2017
A stem cell-based method created by University of California, Irvine scientists can selectively target and kill cancerous tissue while preventing some of the toxic side effects of chemotherapy by treating the disease in a ...

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study uncovers potential 'silver bullet' for preventing and treating colon cancer

July 26, 2017
In preclinical experiments, researchers at VCU Massey Cancer Center have uncovered a new way in which colon cancer develops, as well as a potential "silver bullet" for preventing and treating it. The findings may extend to ...

Compound shows promise in treating melanoma

July 26, 2017
While past attempts to treat melanoma failed to meet expectations, an international team of researchers are hopeful that a compound they tested on both mice and on human cells in a petri dish takes a positive step toward ...

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.