Huntington Disease

Sorry, no news articles match your request. Your search criteria may be too narrow.

Huntington's disease (HD) is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and psychiatric problems. It typically becomes noticeable in mid-adult life. HD is the most common genetic cause of abnormal involuntary writhing movements called chorea, and indeed the disease used to be called Huntington's chorea.

It is much more common in people of Western European descent than in those of Asian or African ancestry. The disease is caused by an autosomal dominant mutation in either of an individual's two copies of a gene called Huntingtin, which means any child of an affected parent has a 50% risk of inheriting the disease. Physical symptoms of Huntington's disease can begin at any age from infancy to old age, but usually begin between 35 and 44 years of age. Through genetic anticipation, the disease may develop earlier in life in each successive generation. About 6% of cases start before the age of 21 years with an akinetic-rigid syndrome; they progress faster and vary slightly. The variant is classified as juvenile, akinetic-rigid or Westphal variant HD.

The Huntingtin gene provides the genetic information for a protein that is also called "huntingtin". Expansion of a CAG triplet repeat stretch within the Huntingtin gene results in a different (mutant) form of the protein, which gradually damages cells in the brain, through mechanisms that are not fully understood. The genetic basis of HD was discovered in 1993 by an international collaborative effort spearheaded by the Hereditary Disease Foundation.

Genetic testing can be performed at any stage of development, even before the onset of symptoms. This fact raises several ethical debates: the age at which an individual is considered mature enough to choose testing; whether parents have the right to have their children tested; and managing confidentiality and disclosure of test results. Genetic counseling has developed to inform and aid individuals considering genetic testing and has become a model for other genetically dominant diseases.

Symptoms of the disease can vary between individuals and even among affected members of the same family, but usually progress predictably. The earliest symptoms are often subtle problems with mood or cognition. A general lack of coordination and an unsteady gait often follows. As the disease advances, uncoordinated, jerky body movements become more apparent, along with a decline in mental abilities and behavioral and psychiatric problems. Physical abilities are gradually impeded until coordinated movement becomes very difficult. Mental abilities generally decline into dementia. Complications such as pneumonia, heart disease, and physical injury from falls reduce life expectancy to around twenty years after symptoms begin. There is no cure for HD, and full-time care is required in the later stages of the disease. Existing pharmaceutical and non-drug treatments can relieve many of its symptoms.

Research and support organizations, first founded in the 1960s and increasing in number, work to increase public awareness, to provide support for individuals and their families, and to promote and facilitate research. Many new research discoveries have been made and understanding of the disease is improving. Current research directions include determining the exact mechanism of the disease, improving animal models to expedite research, clinical trials of pharmaceuticals to treat symptoms or slow the progression of the disease, and studying procedures such as stem cell therapy with the goal of repairing damage caused by the disease.

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

One in 13 US schoolkids takes psych meds

(HealthDay)—More than 7 percent of American schoolchildren are taking at least one medication for emotional or behavioral difficulties, a new government report shows.

Team reprograms blood cells into blood stem cells in mice

Researchers at Boston Children's Hospital have reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells (HSCs), using a cocktail of eight genetic switches called transcription factors. The reprogrammed ...