Vascular Dementia

Multi-infarct dementia is one type of vascular dementia. Vascular dementia is the second most common form of dementia after Alzheimer's disease (AD) in older adults. Multi-infarct dementia (MID) is thought to be an irreversible form of dementia, and its onset is caused by a number of small strokes or sometimes, one large stroke preceded or followed by other smaller strokes. The term refers to a group of syndromes caused by different mechanisms all resulting in vascular lesions in the brain. Early detection and accurate diagnosis are important, as vascular dementia is at least partially preventable.

The main subtypes of this disease are: mild cognitive impairment, multi-infarct dementia, vascular dementia due to a strategic single infarct (affecting the thalamus, the anterior cerebral artery, the parietal lobes or the cingulate gyrus), vascular dementia due to hemorrhagic lesions, and mixed Alzheimer's and vascular dementia.

Vascular lesions can be the result of diffuse cerebrovascular disease or focal lesions; usually both. Mixed dementia is diagnosed when patients have evidence of AD and cerebrovascular disease, either clinically or based on neuroimaging evidence of ischemic lesions. In fact vascular dementia and Alzheimer's disease often coexist, especially in older patients with dementia.

MID is sometimes triggered by cerebral amyloid angiopathy, which involves accumulation of beta amyloid plaques in the walls of the cerebral arteries, leading to breakdown and rupture of the vessels. Since amyloid plaques are a characteristic feature of AD, vascular dementia may occur as a side effect of it. However, CAA can also appear in people with no prior dementia condition.

This text uses material from Wikipedia licensed under CC BY-SA

Latest Spotlight News

Recorded Ebola deaths top 7,000

The worst Ebola outbreak on record has now killed more than 7,000 people, with many of the latest deaths reported in Sierra Leone, the World Health Organization said as United Nations Secretary-General Ban ...

Putting the brakes on cancer

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...