Gene therapy inhibits epilepsy in animals

November 8, 2006

For the first time, researchers have inhibited the development of epilepsy after a brain insult in animals. By using gene therapy to modify signaling pathways in the brain, neurology researchers found that they could significantly reduce the development of epileptic seizures in rats.

"We have shown that there is a window to intervene after a brain insult to reduce the risk that epilepsy will develop," said one of the lead researchers, Amy R. Brooks-Kayal, M.D., a pediatric neurologist at The Children's Hospital of Philadelphia and associate professor of Neurology and Pediatrics at the University of Pennsylvania School of Medicine. "This provides a 'proof of concept' that altering specific signaling pathways in nerve cells after a brain insult or injury could provide a scientific basis for treating patients to prevent epilepsy."

Dr. Brooks-Kayal and Shelley J. Russek, Ph.D., of Boston University School of Medicine were senior authors of the study in the Nov. 1 Journal of Neuroscience.

Working in a portion of the brain called the dentate gyrus, the researchers focused on one type of cell receptor, type A receptors, for the neurotransmitter gamma-aminobutyric acid (GABA). When GABA(A) receptors are activated, they inhibit the repetitive, excessive firing of brain cells that characterizes a seizure. Seizures are thought to occur, at least in part, because of an imbalance between two types of neurotransmitters: the glutamate system, which stimulates neurons to fire, and the GABA system, which inhibits that brain activity.

GABA's inhibitory role is considered particularly important in the dentate gyrus because the dentate gyrus acts as a gateway for brain activity into the hippocampus, an area that is critical to generating seizures in temporal lobe epilepsy, the most common type of epilepsy in children and adults.

GABA(A) receptors are made up of five subunits--proteins that play important roles in brain development and in controlling brain activity. Previous animal research by Dr. Brooks-Kayal's group had found that rats with epilepsy had lower levels of the alpha1 subunits of these receptors and higher levels of alpha4 subunits. Therefore, the researchers used gene delivery to alter the expression of the alpha1 subunit to see if this would have an effect on later seizure development.

To carry the gene that alters the expression of the protein, they used an adeno-associated virus vector, injected into the rats' brains. The researchers later injected the rats with pilocarpine, a drug that causes status epilepticus (SE), a convulsive seizure, shortly after injection.

They then evaluated the rats for later development of spontaneous seizures or epilepsy, which usually occurs after an initial SE injury. Rats that had received the gene therapy had elevated levels of alpha1 proteins and either did not develop spontaneous seizures, or took three times as long to experience a spontaneous seizure, compared to rats that did not receive the delivered gene.

In this short-term study, said Dr. Brooks-Kayal, it was impossible to tell whether the increased alpha1 subunit levels were only suppressing seizures or whether they would permanently prevent epilepsy from developing.

"In people, an initial episode of SE or an injury such as severe head trauma is known to raise the risk of later developing epilepsy, so this study suggests that strategies aimed at modifying signaling pathways in the brain after such an insult may help prevent epilepsy," said Dr. Brooks-Kayal. "The approach would likely be different than in this proof-of-concept animal study that involved injecting agents directly into the brain. This study, does, however, lay the foundation for a potential drug therapy that might act on the same signaling pathways, to prevent epilepsy after a brain insult such as an episode of SE."

Source: Children's Hospital of Philadelphia

Explore further: Rare infant seizure disorder often missed

Related Stories

Rare infant seizure disorder often missed

December 6, 2016

(HealthDay)—Many infants with a rare form of epilepsy known as infantile spasms aren't promptly diagnosed, and that delay can lead to devastating health consequences, new research indicates.

Rhythm of breathing affects memory and fear

December 6, 2016

Northwestern Medicine scientists have discovered for the first time that the rhythm of breathing creates electrical activity in the human brain that enhances emotional judgments and memory recall.

Five things you didn't know about epilepsy

November 8, 2016

Though it's the fourth most common neurological disease in the United States—affecting 1 in 26 people—epilepsy is also one of the most stigmatized. Hear the word "seizure," and you might picture a dramatic scene: A person's ...

Recommended for you

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.