Molecular structure reveals how botulinum toxin attaches to nerve cells

December 13, 2006

May lead to new therapeutics
Botulism is a life-threatening disease caused by exposure to botulinum neurotoxins, which are among the most potent toxins known. These neurotoxins are produced by Clostridium botulinum, a bacterium found in soil and food. In the body, the toxins bind to and enter neurons, interfering with nerve transmission and disrupting the communication between the nerve and muscle fibers throughout the body. Poisoning with botulinum toxins leads to an often-fatal paralysis, which is one reason they are considered among the highest biodefense research priorities by the U.S. government.

As part of its overall biodefense program, the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health (NIH), has established the Regional Centers of Excellence for Biodefense and Emerging Infectious Diseases (RCEs) to support basic and applied research on biodefense-related agents, including botulinum neurotoxins. Now a group of researchers funded in part through two of these RCEs has provided a rare atomic glimpse of the initial step one of these toxins takes to gain entry into human neurons.

In an advanced online publication of the journal Nature, the scientists show structurally how botulinum neurotoxin B (one of seven toxins the bacterium produces) recognizes receptors on the surface of human neurons. The structure reveals how these toxins work at the molecular level and provides a promising new target for designing drugs to block the action of botulinum neurotoxins.

Source: NIH/National Institute of Allergy and Infectious Diseases

Explore further: Experts demonstrate 'advances and refinements' in neuromodulators for facial rejuvenation

Related Stories

Neurons from stem cells could replace mice in botulinum test

February 6, 2012

(PhysOrg.com) -- Using lab-grown human neurons, researchers from the University of Wisconsin-Madison have devised an effective assay for detecting botulinum neurotoxin, the agent widely used to cosmetically smooth the wrinkles ...

Disarming the botulinum neurotoxin

February 23, 2012

Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and the Medical School of Hannover in Germany recently discovered how the botulinum neurotoxin, a potential bioterrorism agent, survives the hostile ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.