Biophysicists Describe New Gating Action of Acetylcholine Receptor

April 19, 2007
Biophysicists Describe New Gating Action of Acetylcholine Receptor
Biophysicist Anthony Auerbach has described a formerly unknown action of the acetylcholine receptor channel in a paper in Nature.

A formerly unknown action of the acetylcholine receptor channel, a protein that regulates the electrical activity of nerve and muscle cells, is described by biophysicists at the University at Buffalo in the April 19 issue of the journal Nature.

Acetylcholine is a neurotransmitter that carries chemical messages across certain brain synapses and across all human nerve-muscle synapses. Acetylcholine receptors bind the neurotransmitter and set in motion a cascade of molecular activity that ultimately results in thought or motion.

"The acetylcholine receptor channel is a molecule-sized valve that opens and closes to regulate the flow of electricity in nerve and muscle cells," said Anthony L. Auerbach, Ph.D., UB professor of physiology and biophysics in the UB School of Medicine and Biomedical Sciences and senior author on the study.

"Before our work, most scientists thought that this protein had a small number of moving parts, perhaps even just one. Also, they thought that these parts moved, between closed and open, smoothly and nearly instantaneously. Our work has shown that the receptor is made up of a much larger number of moving parts, maybe 20 or so, and that these parts jiggle about when they move."

Prasad G. Purohit, Ph.D., postdoctoral associate working with Auerbach, is first author on the paper. Ananya Mitra, a doctoral student in the laboratory, also contributed to the study.

The researchers use a technique called single-molecule kinetic analysis to probe the transition state of the receptor's "gating mechanism," and to estimate the timing of motions within the protein's opening process.

"Perhaps this newfound understanding of how a protein machine works, how it changes shape in order to carry out its appointed task, will someday lead to better protein engineering and drug design," said Auerbach. "If you want to build a better protein, or to modify its function, an important first step is to understand the ones nature has given us."

Auerbach has conducted research for 18 years into the molecular processes involved in protein activity in the nervous system and on how synaptic receptors are activated by their transmitters. He and scientists working in his laboratory now are studying how the subunits that form the receptor work together, and how the protein limits its receptiveness to signaling mechanisms.

Source: University at Buffalo

Explore further: Replacing myelin protects nerve cells, restores function in mouse model of multiple sclerosis

Related Stories

New study supports surgery as treatment for myasthenia gravis

August 10, 2016

In a global study of myasthenia gravis, an autoimmune disease that causes muscle weakness and fatigue, researchers found that surgical removal of an organ called the thymus reduced patients' weakness, and their need for immunosuppressive ...

Researchers find protein essential for cognition, mental health

July 1, 2013

The ability to maintain mental representations of ourselves and the world—the fundamental building block of human cognition—arises from the firing of highly evolved neuronal circuits, a process that is weakened in schizophrenia. ...

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.