3-D brain centers pinpointed

August 1, 2007

In studies with monkeys, researchers have identified in detail the brain regions responsible for the unique ability of primates, including humans, to process visual 3D shapes to guide their sophisticated manipulation of objects.

Specifically, the researchers delineated regions of the parietal cortex responsible for extracting 3D information by integrating disparities in information from the two eyes. Such integration is critical to perceiving three dimensions, because each eye receives only a two-dimensional projection of an image on the retina.

Led by Guy Orban of Katholieke Universiteit Leuven, the researchers published their findings in the August 2, 2007, issue of the journal Neuron, published by Cell Press.

The researchers performed experiments in which they required monkeys to fixate on computer images of objects projected on a screen. As the animals watched the objects, the researchers scanned their brains using magnetic resonance imaging. This widely used technique involves using harmless magnetic fields and radio waves to measure blood flow in brain regions, which reveals brain activity in those regions.

In one set of experiments, the researchers presented images of connected lines, like partially unfolded paper clips, that could be perceived as three-dimensional structures. The researchers studied the influence of motion on 3D perception by presenting the connected-line images only to one eye and “moving” the objects.

The researchers’ analysis of activity in regions of the parietal cortex during these experiment revealed that two areas—called the anterior intraparietal cortex and the lateral intraparietal cortex—were specifically sensitive only to depth structure.

In a second experiment, the researchers presented to the monkeys computer images that simulated small, complex objects. Perception of the three-dimensionality of small objects is central to primates’ ability to grasp and manipulate with their hands. The researchers’ analysis of the animals’ brain activity revealed that the same intraparietal regions are also uniquely sensitive to the depth structure and two-dimensional shape of such objects.

“This study goes beyond previous imaging studies by demonstrating not only that different parietal areas process distinct aspects of visual 3D space in line with their involvement in distinct sensorimotor functions, but also that 3D shape features are specifically represented in anterior intraparietal regions, where such information is required for the efficient control of hand manipulation tasks,” concluded the researchers.

Source: Cell Press

Explore further: Researchers find DNA mutation that led to change in function of gene in humans that sparked larger neocortex

Related Stories

Transplanted interneurons can help reduce fear in mice

December 8, 2016

The expression "once bitten, twice shy" is an illustration of how a bad experience can induce fear and caution. How to effectively reduce the memory of aversive events is a fundamental question in neuroscience. Scientists ...

Deep brain stimulation may not boost memory

December 7, 2016

Deep brain stimulation (DBS) of areas in the brain known to be involved in making memories does not improve memory performance, according to a study by Columbia University researchers published December 7 in Neuron. The study ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.