Study identifies source of fever

August 5, 2007

With the finding that fever is produced by the action of a hormone on a specific site in the brain, scientists have answered a key question as to how this adaptive function helps to protect the body during bacterial infection and other types of illness.

Reported by researchers at Beth Israel Deaconess Medical Center (BIDMC), the study results appear today in Nature Neuroscience’s Advance Online Publication.

“This study shows how the brain produces fever responses during infections,” explains senior author Clifford Saper, MD, PhD, Chairman of the Department of Neurology at BIDMC and James Jackson Putnam Professor of Neurology and Neuroscience at Harvard Medical School. “Our laboratory identified the key site in the brain at which a hormone called prostaglandin E2 (PGE2) acts on a target, called the EP3 receptor, on neurons to cause the fever response.”

During periods of inflammation, such as when the body is fighting an infection or illness, the body produces hormones known as cytokines. The cytokines, in turn, act on blood vessels in the brain to produce PGE2.

“PGE2 then enters the brain’s hypothalamus, causing fever, loss of appetite, fatigue and general feelings of sickness and achiness,” says Saper, explaining that these common symptoms of illness function as an adaptive response to enable the body to better fight infection.

“When body temperature is elevated by a few degrees, white blood cells can fight infections more effectively. Also, individuals tend to become achy and lethargic. Consequently,” he adds, “they tend to take it easy, thereby conserving their energy so that they can better fight the infection. That is why so many different types of illness result in more or less the same sickness behaviors.”

To this point, the specific neurons on which PGE2 was acting to produce fever were unknown. Saper and his colleagues created a knockout mouse in which the gene for the EP3 receptor – which registers the presence of PGE2 – could be removed in one part of the brain at a time.

“This was the first time that anyone has been able to remove the receptor at a single spot in the brain,” says Saper. “As a result, we are able to definitively say that this particular site in the brain – only a little bigger than the head of a pin – is where prostaglandins work to cause the fever response.

“We think that the other aspects of sickness behavior, such as the achiness caused by increased sensitivity to pain, also come from specific sites in the brain,” he adds. “We plan to use this same approach to dissect the brain’s response to inflammation, and find out why people feel the way they do when they are ill.”

Source: Beth Israel Deaconess Medical Center

Explore further: New studies provide more insight into Zika effects

Related Stories

Dehydration can lead to serious complications

September 16, 2016

Dehydration occurs when you use or lose more fluid than you take in, and your body doesn't have enough water and other fluids to carry out its normal functions. If you don't replace lost fluids, you will get dehydrated.

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.