Imaging study provides glimpse of alcohol's effect on brain

April 29, 2008

New brain imaging research published this week shows that, after consuming alcohol, social drinkers had decreased sensitivity in brain regions involved in detecting threats, and increased activity in brain regions involved in reward. The study, in the April 30 issue of The Journal of Neuroscience, is the first human brain imaging study of alcohol’s effect on the response of neuronal circuits to threatening stimuli.

“The key finding of this study is that after alcohol exposure, threat-detecting brain circuits can’t tell the difference between a threatening and non-threatening social stimulus,” said Marina Wolf, PhD, at Rosalind Franklin University of Medicine and Science, who was unaffiliated with the study. “At one end of the spectrum, less anxiety might enable us to approach a new person at a party. But at the other end of the spectrum, we may fail to avoid an argument or a fight. By showing that alcohol exerts this effect in normal volunteers by acting on specific brain circuits, these study results make it harder for someone to believe that risky decision-making after alcohol ‘doesn’t apply to me’,” Wolf said.

Working with a dozen healthy participants who drink socially, research fellow Jodi Gilman, working with senior author Daniel Hommer, MD, at the National Institutes on Alcohol Abuse and Alcoholism, used functional magnetic resonance imaging (fMRI) to study activity in emotion-processing brain regions during alcohol exposure. Over two 45-minute periods, the study participants received either alcohol or a saline solution intravenously and were shown images of fearful facial expressions. (Previous studies have shown that expressions of fear signal a threatening situation and activate specific brain regions.)

The same group of participants received both alcohol and placebo, on two separate days.

Comparing brain activity, Gilman’s team found that when participants received the placebo infusion, fearful facial expressions spurred greater activity than neutral expressions in the amygdala, insula, and parahippocampal gyrus—brain regions involved in fear and avoidance—as well as in the brain’s visual system. However, these regions showed no increased brain activity when the participants were intoxicated.

In addition, alcohol activated striatal areas of the brain that are important components of the reward system. This confirms previous findings and supports the idea that activation of the brain’s reward system is a common feature of all drugs of abuse. Gilman’s team found that the level of striatal activation was associated with how intoxicated the participants reported feeling. These striatal responses help account for the stimulating and addictive properties of alcohol.

“I think the authors have set the standard for how studies on acute alcohol consumption should be conducted in the fMRI literature,” says Read Montague, PhD, at the Baylor College of Medicine, also unaffiliated with the study. “The findings are a stepping stone to more liberal use of imaging methodologies to advance our understanding of addiction.”

Since its development in 1993, fMRI has allowed the noninvasive mapping of function in various regions of the human brain. This technological advance is an important source of information for neuroscientists in a range of fields.

Source: Society for Neuroscience

Explore further: Liver-brain pathway may regulate alcohol consumption

Related Stories

Healthy living equals better brain function

November 9, 2016

It should be obvious that those with greater self-control live a healthier lifestyle. After all, it takes self-control to exercise before work, or forego fried food for kale.

Swipe away your drinking problem

November 10, 2016

An app has been developed that helps people struggling with alcohol addiction to reduce their alcohol intake, or to quit drinking completely.

Yogic breathing helps fight major depression, study shows

November 22, 2016

A breathing-based meditation practice known as Sudarshan Kriya yoga helped alleviate severe depression in people who did not fully respond to antidepressant treatments, reports a new study published today in the Journal of ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.