Potential therapy discovered for hypophosphatasia, a congenital form of rickets

May 30, 2008

Researchers at the Burnham Institute for Medical Research, led by José Luis Millán, Ph.D., have demonstrated in mice the first successful use of enzyme replacement therapy to prevent hypophosphatasia (HPP), a primary skeletal disease of genetic origin. This discovery lays the foundation for future clinical trials for HPP patients.

Rickets is a softening of the bones that most commonly results from a lack of vitamin D or calcium and from insufficient exposure to sunlight. Hypophosphatasia is a rare, heritable form of rickets caused by mutations in a gene called TNAP, which is essential for the process that causes minerals such as calcium and phosphorus to be deposited in developing bones and teeth.

The physical presentations of this disorder can vary depending on the specific mutation, with more severe symptoms occurring at a younger age of onset. The most severe form of the disease occurs at birth, which can present with absence of bone mineralization in utero, resulting in stillbirth.

Using a mouse model, José Luis Millán, Ph.D. tested the hypothesis that, when administered from birth, a bone-targeted form of the TNAP gene would ease the skeletal defects of HPP. The Millán laboratory, in collaboration with scientists from Enobia Pharma in Montreal, Canada and from the Shriners Hospitals for Children in St. Louis, Missouri, created a soluble form of human TNAP that had been shown to display a strong attraction to bone tissue. Upon injecting the enzyme into the fat layer under the skin of the mice, the treated mice maintained a healthy rate of growth and apparent well being, as well as normal bone mineral density (BMD) of the skull, femur and spine. In fact, complete preservation of skeletal and dental structures were observed after 15 days, and bone lesions were still not seen after 52 days of treatment.

"While the biochemical mechanism that leads to skeletal and dental defects of HPP is now generally understood," said Dr. Millán, "there is currently no established medical treatment."

Given the success of this therapy in preventing HPP, current efforts in Dr. Millán's laboratory are focused on reversing the bone defects in mice once the disease is quite advanced. Future clinical trials may reveal this as the first promising therapy for patients with this genetic disorder.

This study was published in the Journal of Bone and Mineral Research.

Source: Burnham Institute

Explore further: Infants with rare bone disease improve bone formation after cell transplantation

Related Stories

Therapy helps regenerate child's undeveloped bones

April 24, 2013

Four years ago, Janelly Martinez-Amador was confined to a bed, unable to move even an arm or lift her head. At age 3, the fragile toddler had the gross motor skills of a newborn and a ventilator kept her alive.

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.