Lack of fragile X and related gene fractures sleep

June 26, 2008

Lack of both the fragile X syndrome gene and one that is related could account for sleep problems associated with the disorder, which is the common cause of inherited mental impairment, said a consortium of researchers led by scientists at Baylor College of Medicine in Houston. Their findings appear in a report in the current issue of the American Journal of Human Genetics.

Mice deficient in the fragile X mental retardation 1 gene (FMR1) and a similar gene called fragile X-related gene 2 (FXR2) have no rhythm to their wake and sleep pattern, said Dr. David Nelson, professor of molecular and human genetics at BCM and co-director of the Interdepartmental Program in Cell and Molecular Biology.

Normal mice have a sleep-wake cycle of just under 12 hours awake and 12 hours asleep. Exposed to light and dark, they are awake in the dark and asleep during the light because they are nocturnal animals. If they are kept in the dark, their cycle reduces by about 10 minutes per sleep-wake period but remains fairly normal. When mice do not have either FMR1 or FXR2, they have a slightly shorter cycle but the difference is not dramatic.

"However, the double-mutants (those without both genes) have no rhythm at all," said Nelson. "This has never been seen in a mouse before." The animals, usually kept in a cage with a wheel on which they run when awake, sleep a little, run a little, sleep a little – but there is no rhythm to it.

The finding is important because parents whose children have autism or fragile X report problems getting their children to go to sleep and stay asleep. Fragile X is the most common known cause of autism. While there are few studies on the topic, said Nelson, "the impression I have is that many fragile X patients have a period of time that's like an extended infancy when they don't settle into a typical sleep–wake period."

Understanding how the gene associated with fragile X affect the circadian clock or the sleep-wake cycle could help explain some of the symptoms experienced by patients, he said.

After ruling out the possibility that the animals without the two genes could not perceive light, Nelson collaborated with a group in The Netherlands to test whether the cell's "central clock" called the suprachiasmatic nucleus in the animals was normal. They concluded that the clock was normal but that somehow the expression of genes that govern it is altered in these mice.

"These genes (FMR1 and FXR2) are new players in the control of circadian (daily) rhythms," said Nelson. Currently, the genes are thought to have a role in translating RNAs (ribonucleic acids) – particularly at the receiving side of the connections between neurons called dendrites. Dendrites are characterized by the fine branches that reach out into tissue. Scientists theorize that FMR1 and FXR2 may be involved in transporting the RNAs to the areas of those branches where the synapse is present.

Source: Baylor College of Medicine

Explore further: Reactivation of embryonic genes leads to muscle aging

Related Stories

Reactivation of embryonic genes leads to muscle aging

December 1, 2016

Developmental genes and pathways strictly regulate embryogenesis. The process is strongly driven by so-called Hox-genes. Now, researchers from the Leibniz Institute on Aging (FLI) in Jena, Germany, can show that one of these ...

Fragile X gene's prevalence suggests broader health risk

June 14, 2012

The first U.S. population prevalence study of mutations in the gene that causes fragile X syndrome, the most common inherited form of intellectual disability, suggests the mutation in the gene – and its associated health ...

New insight into fragile gene

July 22, 2011

(Medical Xpress) -- New research could change the way health professionals identify and treat late-onset dementia.

Recommended for you

UK experts give green light to 'three-parent babies'

November 30, 2016

British scientists on Wednesday approved the use of so-called "three-parent baby" fertility treatments, paving the way for the country to become the first in the world to officially introduce the procedures.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.