New technology enhances therapeutic potential of cord blood stem cells

June 6, 2008

A CD26 Inhibitor increases the efficiency and responsiveness of umbilical cord blood for bone marrow transplants and may improve care for blood cancer patients according to research from Rush University Medical Center being presented at the 6th Annual International Umbilical Cord Blood Transplantation Symposium, June 6-7 in Los Angeles.

Kent W. Christopherson II, PhD, assistant professor of medicine and researcher in the Sections of Hematology and Stem Cell Transplantation at Rush, is researching a CD26 Inhibitor, a small molecule enzyme inhibitor that enhances directional homing of stem cells to the bone marrow by increasing the responsiveness of donor stem cells to a natural homing signal. Homing is the process by which the donor stem cells find their way to the bone marrow. It is the first and essential step in stem cell transplantation.

Cord blood is increasingly being used by transplant centers as an alternative source of stem cells for the treatment of blood cancers, including myeloma, lymphoma and leukemia. The cells, which are collected from the umbilical cord after the baby is delivered and separated from the cord, are most commonly used for bone marrow transplantation when a donor from a patient's family or an unrelated donor does not produce an appropriate bone marrow match.

The current drawback to the usage of cord blood cells is that due to the limited volume and cell number, there are generally only enough cells available from a single cord blood collection for children or very small adults. Cord blood cells also usually take longer to engraft, leaving the patient at a high risk for infection longer than donor matched transplanted marrow or peripheral blood stem cells. The goal of Christopherson's research is to increase the transplant efficiency of umbilical cord blood and ultimately make transplant safer and available to all patients who require this treatment.

In his discussion on "Strategies to Improve Homing," Christopherson states that results from his and other laboratories suggest "the beneficial effects of the CD26 Inhibitor usage and the potential of this technology to change hematopoietic stem cell transplantation."

Christopherson will co-chair the session and review some of his Leukemia & Lymphoma Society funded work at the symposium in a session entitled "Basic Science and Clinical Studies Addressing Obstacles to Successful Umbilical Cord Blood Transplants (UCBT)". He will be joined by Dr. Patrick Zweidler-McKay of the University of Texas MD Anderson Cancer Center. Zweidler-McKay will discuss his team's work in the same session on Engraftin™, a human recombinant enzyme technology that increases the efficiency of engraftment and reduces graft failure in transplantation of cord blood derived stem cells.

Research results in animal models by Christopherson and Zweider-McKay show that both Engraftin and CD26 Inhibitor can enhance homing and rate of engraftment, which will result in reduced patient morbidity and mortality in bone marrow transplants. American Stem Cell, Inc., the developer of both technologies, plans to begin human trials in the next few months.

There are over 250,000 new cancer patients per year who require or would benefit from stem cell transplantation and as many as 20% are unable to find a blood or marrow match.

Source: Rush University Medical Center

Explore further: Vitamin D increases the number of blood stem cells during embryonic development

Related Stories

Treating leukemia with cord-blood transplant looks promising

September 8, 2016

(HealthDay)—Umbilical cord blood may work as well as current alternatives for adults and children with leukemia—or even better in some cases, according to a study published in the Sept. 8 issue of the New England Journal ...

Immunotherapy a hot topic in treating cancers

September 15, 2016

Last Friday was Rebecca Hertzog Burns' birthday. She turned 2. She says that's her age, though she's really 27. After a relapse in her fight with acute myelogenous leukemia, Burns received a stem cell transplant on Sept. ...

Study finds a key to nerve regeneration

September 14, 2016

Researchers at the University of Wisconsin–Madison have found a switch that redirects helper cells in the peripheral nervous system into "repair" mode, a form that restores damaged axons.

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Scientists develop 'world-first' 3-D mammary gland model

October 27, 2016

A team of researchers from Cardiff University and Monash Biomedicine Discovery Institute has succeeded in creating a three-dimensional mammary gland model that will pave the way for a better understanding of the mechanisms ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.