How 'hidden mutations' contribute to HIV drug resistance

July 31, 2008

One of the major reasons that treatment for HIV/AIDS often doesn't work as well as it should is resistance to the drugs involved. Now, scientists at McGill University have revealed how mutations hidden in previously ignored parts of the HIV genome play an important role in the development of drug resistance in AIDS patients. Their study will be published Aug. 8 in the Journal of Biological Chemistry.

"HIV develops resistance very rapidly, and once that happens, drugs don't work as well as they theoretically should, or they stop working altogether," explained Dr. Matthias Götte, an associate professor in McGill's Department of Microbiology and Immunology. "Physicians routinely have the patient's virus tested for resistance in advance of treatment to help make the appropriate clinical decisions."

The study was conducted by a team of researchers led by Dr. Götte at McGill's Faculty of Medicine, with assistance from the B.C. Centre for Excellence in HIV/AIDS at the University of British Columbia (UBC). It was funded by the Canadian Institutes for Health Research (CIHR).

HIV genotype testing is now widely established in HIV drug resistance screening. However, for technical and economic reasons, the entire HIV genome is usually not sequenced.

"The focus has been on specific areas of the HIV genome where we expect these resistance-conferring mutations to occur," Dr. Götte said. "We focus on a particular sequence on an important gene from amino acid 1 to 300, and as such, we miss roughly a third of this gene. Until recently, most researchers believed that this hidden area was of little clinical significance."

Within the last few years, however, studies started to suggest that the first 300 amino acids alone may not completely describe the drug resistance landscape. Dr. Götte and his colleagues selected a few of these previously uncharacterized mutations and subjected them to a battery of highly sensitive biochemical tests.

"People were skeptical," Dr. Götte said. "The mechanism about how these mutations could be involved in resistance was not clear. However, in our paper, we present data that explains in considerable detail how these mutations work."

Nevertheless, he cautioned, the debate about whether to routinely screen these areas of the HIV genome will still likely continue for some time.

"It's extremely time-consuming and expensive to validate genotype testing," he said. "However, we probably will be testing these areas in a couple of years."

Source: McGill University

Explore further: HIV patients showing signs of multidrug resistance in Africa

Related Stories

Researchers use CRISPR to accelerate search for HIV cure

October 25, 2016

Researchers at UC San Francisco and the academically affiliated Gladstone Institutes have used a newly developed gene-editing system to find gene mutations that make human immune cells resistant to HIV infection.

Recommended for you

S.Africa launches major new trial of AIDS vaccine

November 29, 2016

South Africa on Wednesday launched a major clinical trial of an experimental vaccine against the AIDS virus, which scientists hope could be the "final nail in the coffin" for the disease.

HIV survives in our chromosomal DNA

November 17, 2016

It has been said that HIV cannot be cured since the virus propagates in places beyond the reach of antiviral agents. New research from Karolinska Institutet suggests, however, that this view is incorrect.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.