New methods identify and manipulate 'newborn' cells in animal model of Parkinson's disease

September 3, 2008

When cells in the brain are lost through disease or injury, neighboring cells begin to divide and multiply, but only a few areas in the brain are able to produce new neurons. Patients with Parkinson's disease suffer degeneration of certain neurons that reside in an area of the brain called the substantia nigra and project into the striatum. Many of the newborn cells in these areas have not been well described because of limitations of methods used to characterize them.

A research team from Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Institute and Lund University in Sweden used an engineered virus to deliver a protein that glows green when exposed to blue light (green fluorescent protein) into newborn cells of the striatum in an animal model (rats) of Parkinson's disease. This revealed that no neurons are formed; most of the cells appear to be glial (structural) cells.

To determine if the newborn cells could be manipulated to generate neurons, the researchers delivered into the cells two genes (neurogenin2 and noggin) that are involved in the genesis of neurons. Neither gene had any effect on the ability of newborn striatal cells to form new neurons, but the insertion of noggin greatly increased the number of oligodendrocytes, cells that support neurons.

Dwain Morris-Irvin, Ph.D., a research scientist at Cedars-Sinai's Maxine Dunitz Neurosurgical Institute and Lund University, is available to describe how scientists are using green fluorescent protein and other new approaches in their effort to find cures for Parkinson's disease and other neurodegenerative brain disorders. Morris-Irvin is the first and corresponding author of a recent cover article in Neurobiology of Disease.

"These results may have great potential for studying the effects of viral gene delivery in the attempt to generate new cells for cell replacement therapy in neurodegenerative diseases or for brain repair after injury," Morris-Irvin said. "The success of a 'self-repair' strategy depends on the continued growth of our understanding of complex signaling patterns governing the development of these newborn cells."

Source: Cedars-Sinai Medical Center

Explore further: When neurons are 'born' impacts olfactory behavior in mice

Related Stories

When neurons are 'born' impacts olfactory behavior in mice

December 7, 2016

New research from North Carolina State University shows that neurons generated at different life stages in mice can impact aspects of their olfactory sense and behavior. The work could have implications for our understanding ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.