Mathematical model could help diagnose and treat stress disorders

February 19, 2009 By Quinn Phillips

( -- Over 20 million people in North America suffer chronic stress-related diseases. But two University of Alberta researchers may be on the fast track to treating these illnesses.

Amos Ben-Zvi, Gordon Broderick and scientist Suzanne Vernon have discovered that the human body can swing from its normal and healthy state to a permanent unhealthy state. But Ben-Zvi and Broderick worked with Vernon, the director of the Chronic Fatigue Immune Dysfunction Syndrome Association of America, on a mathematical model that has shown that the body can be returned to its healthy homeostasis through the use of hormones rather than through pharmaceutical treatments.

The body's natural, stable state is controlled by many systems, including the combined function of the hypothalamus, pituitary and adrenal glands. This is where the potential treatments come in. The researchers brought biology and mathematics together to systematically map the dynamics of stress response. In doing so, Ben-Zvi and Broderick have found a theoretical way for the body to use its own hormones.

The benefits of this discovery are twofold: Ben-Zvi and Broderick, who are both chemical engineers, have created a mathematical model that could help physicians diagnose and treat sufferers of diseases like chronic fatigue and post-traumatic stress disorder. Plus, the ability to swing the body back into a healthy state may mean that many no longer have to rely on life-long drug treatment dependency. "This type of approach is nice in the sense that you're working with the body, you're not working against the body," said Ben-Zvi.

But before their model can be applied, a lot of work needs to be done. Now that they have the data, they need to analyze it further and calibrate the model so it can be applied beyond abstraction.

"We're going to address questions [including] how complex or how detailed the model has to be to produce reliable strategies," said Broderick.

"That's what makes this tool very useful. You can look at a variety of models and for each model you can design a set of experiments that validate one model versus another," said Ben-Zvi. "You can also, given a model you trust, design a set of treatments and specify a wide range of different types of treatments."

Once the researchers find a model that fits, the progression to clinical trials will be fast. Because the treatment involves hormones that the patient's body naturally produces, Health Canada and Federal Drug Administration approval isn't required.

"We're not trying a new drug, we're just trying a different application, a different dosage, a different spacing of doses of already approved drugs," said Broderick. "We're taking the express lane to therapy development by avoiding the development of new chemicals."

Provided by University of Alberta

Explore further: How many genes does it take to make a person?

Related Stories

How many genes does it take to make a person?

October 19, 2016

We humans like to think of ourselves as on the top of the heap compared to all the other living things on our planet. Life has evolved over three billion years from simple one-celled creatures through to multicellular plants ...

More effective medication for HIV and MDR-TB

September 5, 2016

Patients with both HIV and multi-drug-resistant tuberculosis (MDR-TB) can now receive better-balanced medication. This may shorten the treatment duration for MDR-TB and reduce the many side effects associated with current ...

As simple as random can be

September 19, 2016

A few weeks ago I was having a discussion about mathematical models for the prediction of the movements of the stock market. The question was whether there was any use to developing complex algorithms trying to predict these ...

HIV is not a super-spreader of drug-resistant tuberculosis

August 9, 2016

While the human immunodeficiency virus (HIV) pandemic fuels tuberculosis (TB) outbreaks, it does not drive the development and transmission of multidrug-resistance in TB patients as previously suspected, according to a study ...

Recommended for you

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...

Hormone that controls maturation of fat cells discovered

October 25, 2016

Scientists at the Stanford University School of Medicine have discovered a hormone that controls the first step in the maturation of fat cells. Its actions help explain how high-fat diets, stress and certain steroid medications ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.