Molecules help the immune system to detect cells infected with West Nile virus

February 5, 2009

New research reveals a model of host-pathogen interaction that explains how the immune system finds and destroys cells infected with a potentially lethal brain virus. The study, published online on February 5th in Immunity, a Cell Press publication, may lead to new treatments for West Nile virus (WNV) and other similar viral infections.

WNV is a single-stranded (ss)RNA virus that is the most common cause of viral inflammation of the brain (encephalitis) in North America, and it has emerged as a significant worldwide public health concern. Infection with the virus, which is spread by mosquitoes, is often asymptomatic but can lead to a potentially fatal inflammation of the brain. "An approved therapy for use in humans does not currently exist, and viral pathogenesis is incompletely understood," says senior study author Dr. Richard A. Flavell from the Yale University School of Medicine.

Dr. Flavell and colleagues had previously shown that Toll-like receptor 7 (TLR7), a molecule known to play an important role in innate immunity (the body's first line of defense against infection), is involved in helping the immune system to recognize ssRNA viruses. His team sought to demonstrate a functional role for TLR7 in the control of WNV infection.

The researchers examined WNV infection in mice lacking either TLR7 or MyD88, an adaptor molecule used by TLR7 for detecting infection with a ssRNA virus. Mice lacking TLR7 or MyD88 exhibited increased susceptibility to lethal WNV encephalitis. The mice had increased levels of WNV and, unexpectedly, increased levels of most of the innate immune system chemicals that are thought to be critical for host anti-viral immunity.

In contrast, mice lacking TLR7 or MyD88 had reduced levels of other key chemicals, including interleukin-23 (IL-23). Additional studies revealed that macrophages, immune cells that ingest and kill virus-infected cells, failed to home to WNV-infected cells in mice lacking TLR7. This suggests that TLR7 and IL-23-dependent WNV responses play a critical role in the ability of the host innate immune system to locate infected cells.

" Taken together, our results show that TLR7 is a critical host sensor of WNV required for IL-23-dependent immune cell homing to infected target cells, and they suggest that pharmacotherapy aimed at promoting TLR7/IL-23 signaling will be beneficial for treatment of WNV and perhaps other viruses that cause encephalitis," concludes Dr. Flavell.

Source: Cell Press

Explore further: Parkinson's disease linked to microbiome

Related Stories

Parkinson's disease linked to microbiome

December 1, 2016

Caltech scientists have discovered for the first time a functional link between bacteria in the intestines and Parkinson's disease (PD). The researchers show that changes in the composition of gut bacterial populations—or ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.