Combination of direct antivirals may be key to curing hepatitis C

May 5, 2010

A combination of antiviral drugs may be needed to combat the drug resistance that rapidly develops in potentially deadly hepatitis C infections, a new study using sophisticated computer and mathematical modeling has shown.

Using probabilistic and viral dynamic models, researchers at the University of Illinois at Chicago, Oakland University and Los Alamos National Laboratory predict why rapid resistance emerges in and show that a combination of drugs that can fight three or more mutated strains may be needed to eradicate the virus from the body. They compared their model with data from a clinical trial of the new direct-acting antiviral medication telaprevir.

The findings are published in Science Translational Medicine.

is a progressive that can lead to cirrhosis and . Current standard treatment is a combination of the interferon and ribavirin for a period of 24 to 48 weeks -- a regimen that is long and expensive, carries side effects, and is successful only in about half of patients.

Intensive effort has focused on developing direct antiviral drugs. But the virus is genetically diverse, and so may be particularly prone to develop resistance, said Harel Dahari, research assistant professor of hepatology in the UIC College of Medicine and one of the paper's co-authors.

One way to combat resistance would be to administer multiple drugs, each with a different mechanism of inhibiting the virus.

"We found that rapid emergence of resistance to these types of drugs is due to a population of viruses already present, allowing the resistant virus to become the dominant strain," said Dahari.

The researchers suggest that a combination of new antiviral drugs will be needed to fight all of the resistant virus strains and achieve better cure rates for the disease.

"We are moving to a new era where we can treat these patients with direct-acting agents against the virus, in which we specifically target the life-cycle of the virus," Dahari said.

To replace the standard treatment, four or more different types of direct drugs may be needed, Dahari said. However, some patients may need fewer drugs. It depends on the level of the virus in their blood, among other factors.

It is frustrating for patients to go through a long, difficult treatment and know that they might not be cured, said Dr. Scott Cotler, associate professor of medicine at UIC and a hepatologist who treats patients at the University of Illinois Medical Center's Walter Payton Liver Center.

"Patients are looking forward to a day when they don't have to take interferon and ribavirin," said Cotler. "But as we are learning with this study, if we are going to need four different direct drugs, it is going to be awhile before we get there. Now at least we know where the goal line is."

Dahari suggests that future treatment that includes the standard treatment and direct antivirals, such as telaprevir or boceprevir, will be tailored to each patient and that using direct antivirals may also shorten the duration of treatment.

Related Stories

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.