Molecular imaging agent coupled with 'motion frozen' processing improves heart imaging

June 7, 2010

Molecular imaging of the heart just got better, according to a study revealed at SNM's 57th Annual Meeting. Combining a potential new imaging agent with a molecular imaging technique that reduces blur caused by the motion of the heart and lungs could lead to unprecedented image quality when conducting myocardial perfusion imaging, a procedure used to evaluate blood flow to the heart.

"Both cardiac and respiratory motion degrade image quality by adding some unwanted blur," said Ludovic Le Meunier, Ph.D., lead researcher and staff scientist for Siemens Healthcare, Knoxville, Tenn., based at Cedars-Sinai Medical Center, Los Angeles, Calif. "Our objective in this work was to provide the highest myocardial perfusion image quality by using a promising heart imaging agent and correcting the motion of those organs. In conjunction, these tools can provide unprecedented diagnostic capability for clinicians evaluating heart disease."

The new imaging agent, called flurpiridaz F 18 injection, uses a fluorine-18 (F-18) based radioisotope, and while it is still in clinical trials, the compound has been shown to facilitate very high-quality imaging of the heart. Other positron (PET) agents used to image the heart have a much shorter half-life and need to be produced within an on-site , which limits access. Some agents can be produced on-site with a generator, but image quality appears not to be as high. F-18 has a half-life of 108 minutes and therefore can be delivered to imaging centers located within a wider radius, with no compromise to image quality.

The technology used in this study included high-definition, or "HD" PET, a technique that images the body's physiological functions and automatically corrects distortions that occur during scanning. Next, researchers used post-scan image processing tools called respiratory gating and "motion-frozen" cardiac gating, which cut out or otherwise compensate for the motion of these organs during scanning. The result is virtually motion-free myocardial perfusion imaging.

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.