Cardiac muscle really knows how to relax: Potential cardio-protective mechanism in heart

New insight into the physiology of cardiac muscle may lead to the development of therapeutic strategies that exploit an inherent protective state of the heart. The research, published by Cell Press online on April 19th in the Biophysical Journal, discovers a state of cardiac muscle that exhibits a low metabolic rate and may help to regulate energy use and promote efficiency in this hard-working and vital organ.

Muscle cells are highly specialized cells that are able to physically contract and produce force. Many variables contribute to the active generation of force, with the availability of calcium in the cell interior playing a major role in the process of muscle contraction. However, recent studies have also implicated the state of a key contractile protein called myosin. Myosin is a motor protein that binds to another contractile protein (called actin) and, using energy it liberated from ATP, pulls on the actin to physically shorten the muscle.

"We have recently identified a new 'super' relaxed state of myosin in resting skeletal muscle, called the SRX," says senior study author, Dr. Roger Cooke from the University of California, San Francisco. "The SRX state has a much smaller ATP turnover rate and shows that "relaxed" myosin comes in at least two states that differ with regards to energy utilization. By analogy with another motor, active myosin generating force is akin to a car racing down the road. The normal relaxed myosin is similar to a car stopped at a traffic light with the motor running, and the counterpart of the SRX is a car parked beside the road with the motor off. In the current study, we sought to build on our earlier work in skeletal muscle and examine the SRX state in ."

Dr. Cooke's group showed that there is an SRX state in resting cardiac muscle cells that is similar to the SRX state in resting . The researchers went on to show that when you look at active muscle, the SRX state is quite different in cardiac muscle compared to skeletal muscle. "We observed a rapid transition of myosin out of the SRX state in active skeletal muscle cells, while, somewhat surprisingly, the SRX state was maintained in active cardiac muscle cells," says Dr. Cooke. This suggests that the SRX plays a very different role in these different types of muscle.

"We identified a new state of in cardiac muscle with a very low ATP turnover rate that could play a role in decreasing the metabolic load of the myocardium," explains Dr. Cooke. "The mechanism proposed here for suggests that therapeutic interventions that increase the population of the SRX would be cardio-protective during times of stress. They may also be useful in preserving organs for transplant."

Related Stories

Muscle weakness: New mutation identified

Jun 14, 2007

New research, published in The Journal of Physiology, has identified a novel mutation associated with muscle weakness and distal limb deformities. The study demonstrates that muscle weakness experienced by persons with a ...

Secrets of water bug wings shed light on heart beats

Dec 07, 2010

A research, led by R.J. Perz-Edwards, Ph.D., of Duke University Medical Center, explains how insect flight muscle works, in particular how insects accomplish something called 'stretch activation,' which has been a scientific ...

Key finding in rare muscle disease

Jan 17, 2007

The finding is in the current issue of Annals of Neurology, a leading international neurology journal, in work led by Professor Nigel Laing and Dr Kristen Nowak of the Laboratory for Molecular Genetics at the Western Austra ...

New mathematical model could aid studies of cardiac muscle

Jul 26, 2010

Researchers have developed a new mathematical model that may provide a simpler and better way of predicting ventricular function during the cardiac cycle. The new model could help researchers improve treatment options for ...

Recommended for you

A global view on the prevention of cardiovascular disease

9 hours ago

The United Nations and the World Health Organization pledged in 2011 to reduce premature mortality from non-communicable diseases - most notably cardiovascular diseases - by 25% by the year 2025. It's an ambitious target, ...

Stroke healthcare inequalities remain in the UK

15 hours ago

The quality of healthcare provided after a stroke remains uneven in the UK, according to a new study led by King's College London. Despite improvements in equal access to healthcare since 2001, patients from ...

FDA approves expanded indication for CRT devices

19 hours ago

(HealthDay)—The U.S. Food and Drug Administration has approved an application from Medtronic for revised labeling for two cardiac resynchronization pacemakers (CRT-P) and eight cardiac resynchronization ...

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

akirasakurai
not rated yet Apr 19, 2011
There is also a neuronal feedback system that prevents cardiac arrest in the CRUSTACEAN heart. The heart pacemaker neurons get hyperpolarized and cease firing in response to increased myocardial tension.