Drug boosts growth factor to jump-start rapid antidepressant response

June 22, 2011
When in their default (resting) state, neurons that mediate ketamine’s action engage in the brain’s equivalent of background chatter. They spontaneously spray out (orange) the chemical messenger glutamate (green circles), which binds to NMDA receptors (black ovals) on adjoining neurons. This activates the enzyme eEF2 kinase, which suppresses synthesis of BDNF, a growth factor that has antidepressant effects. Treatment with ketamine blocks the binding of the neurotransmitter to the receptors (blue dots on black ovals), which inactivates the enzyme, taking the brakes off translation of BDNF into protein. This jump-starts a fast-acting antidepressant effect. Source: Lisa Monteggia, Ph.D., University of Texas Southwestern Medical Center

(Medical Xpress) -- A study in mice has pinpointed a pivotal new player in triggering the rapid antidepressant response produced by ketamine. By deactivating a little-known enzyme, the drug takes the brakes off rapid synthesis of a key growth factor thought to lift depression, say researchers supported by the National Institutes of Health.

“Other agents that work through this pathway and block the enzyme may also similarly induce anti-depressant-like effects and hold promise for development of new treatments,” said Lisa Monteggia, Ph.D., of the University of Texas Southwestern Medical Center, Dallas, a grantee of the NIH’s National Institute of Mental Health.

Monteggia, Ege Kavalali, Ph.D., and colleagues reported their findings online June 15, 2011 in the journal Nature.

Unlike currently available antidepressants that take weeks to work, ketamine can lift mood within hours. Yet adverse side effects of this animal anesthetic — and sometime club drug — preclude it from becoming a practical treatment. So researchers have been studying its mechanism of action, in hopes of developing safer alternatives that work the same way.

Earlier studies had shown that the growth factor, called brain-derived neurotrophic factor (BDNF), produces antidepressant-like effects. To find out if BDNF is involved in ketamine’s action, the researchers gave the drug to mice genetically engineered to lack BDNF. Unlike in control mice, ketamine failed to produce a fast-acting antidepressant-like response in such BDNF knockout mice exposed to experimental situations that trigger depression-like behaviors. This and other tests confirmed that ketamine’s rapid antidepressant effects depend on rapid synthesis of BDNF in the brain’s memory center, or hippocampus.

The researchers determined that this happens so quickly — within 30 minutes — because time-consuming intermediate steps have already been completed. It only requires the translation of BDNF mRNA, an intermediate form, into the final protein. By contrast, conventional antidepressants are thought to work through a much more lengthy and indirect process that requires, among other things, the birth of new neurons and their integration into circuits.

Ketamine achieves this boost in BDNF levels by first blocking a protein on neurons (brain cells) called the NMDA receptor. The Texas team discovered that this blockade, in turn, deactivates an enzyme called eukaryotic elongation factor 2 (eEF2) kinase, which restrains BDNF synthesis. So ketamine (and presumably other agents that similarly turn off the enzyme) effectively takes the brakes off of this antidepressant mechanism.

“Selectively inhibiting the eEF2 kinase was sufficient to trigger a rapidly acting antidepressant response in control mice but not in lacking BDNF,” explained Monteggia.

The researchers discovered that the boost in BDNF occurs while neurons are in their default mode – not doing anything in particular. But the cells continue communicating via a low level of background chatter, spontaneously releasing chemical messengers that bind to receptors. So when ketamine blocks NMDA receptors, it prevents their naturally occurring messenger chemical, glutamate, from binding to them.

“Interference with such spontaneous neurotransmission to trigger production of a protein represents a novel mode of drug action,” Monteggia noted. “It may also hold clues to what goes awry in the brain in disorders like .”

Although BDNF levels fall off sharply following the transient increase triggered by ketamine, she says evidence may also support a role for BDNF in the drug’s longer-term antidepressant effects. The exact role of another enzyme implicated in ’s antidepressant action remains to be determined, in light of the new findings. Yale researchers reported last fall that the drug triggered increased connections between neurons via effects on the enzyme, called mTOR.

“This discovery of a novel pathway involved in mediating fast-acting antidepressant action holds hope for development of new rapid-acting medications,” said Monteggia.

Explore further: Faster-acting antidepressants closer to becoming a reality

Related Stories

Faster-acting antidepressants closer to becoming a reality

July 24, 2007

A new study has revealed more about how the medication ketamine, when used experimentally for depression, relieves symptoms of the disorder in hours instead of the weeks or months it takes for current antidepressants to work. ...

Researchers explore the antidepressant effects of ketamine

February 21, 2008

Drug treatments for depression can take many weeks for the beneficial effects to emerge. The excruciating and disabling nature of depression highlights the urgency of developing treatments that act more rapidly. Ketamine, ...

Researchers describe secrets of 'magic' antidepressant

August 19, 2010

Yale researchers have discovered how a novel anti-depressant can take effect in hours, rather than the weeks or months usually required for most drugs currently on the market. The findings, described in the August 20 issue ...

Move over Prozac: New drug offers hope for depression

April 18, 2011

The brain chemistry that underlies depression is incompletely understood, but research suggests that aberrant signaling by a chemical called Brain-Derived Neurotrophic Factor through its receptor TrkB, may contribute to anxiety ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.