DNA sequencing technology yields new insights into German E. coli pathogen

An international team of scientists has successfully employed single molecule, real-time (SMRT™) DNA sequencing technology from Pacific Biosciences of California, Inc. (NASDAQ: PACB) to provide valuable insights into the pathogenicity and evolutionary origins of the highly virulent bacterium responsible for the German E. coli outbreak. Published online today in the New England Journal of Medicine, the results provide the most detailed genetic profile to date of the outbreak strain, including medically relevant information.

The researchers determined the outbreak strain was a member of the enteroaggregative pathotype of E. coli (EAEC) with serotype O104:H4. The outbreak isolates are distinguished from other O104:H4 strains because they contain genes encoding Shiga toxin 2 (Stx2) and a distinct set of additional virulence and antibiotic resistance factors. In addition, the team found that expression of the stx2 gene was increased by certain antibiotics including ciprofloxacin, suggesting caution should be used before using certain classes of antibiotics to counteract this newly emerged pathogen.

By sequencing the outbreak strain and 11 related strains with the PacBio RS, the team concluded that horizontal genetic exchange with the Shiga toxin-producing enterohemorrhagic E. coli (EHEC) strain enabled the emergence of the highly virulent Shiga toxin-producing O104:H4 EAEC strain. The genetic analysis also indicates that evolution of this new form was a relatively recent event.

The team identified many virulence factor genes commonly found in EAEC. Furthermore, the exceptionally long sequencing reads that are characteristic of PacBio SMRT DNA sequencing technology enabled the team to also detect larger-scale deletions, insertions, inversions and other structural variation between the O104:H4 outbreak samples and the other O104:H4 EAEC samples that were sequenced. Several of these structurally divergent regions house genes that encode virulence factors. Another feature in which the current outbreak diverges from common EAEC isolates is in the number and nature of SPATE proteases. Taken together, the results provide a possible explanation for the increased virulence of the German E. coli outbreak strain.

The authors included scientists in the U.S. and Denmark from Pacific Biosciences, the University of Maryland School of Medicine, the University of Virginia School of Medicine, the World Health Organization Collaborating Centre for Reference and Research on Escherichia coli and Klebsiella, the Statens Serum Institut, Hvidovre University Hospital, Brigham and Women's Hospital and Harvard Medical School.

"This multi-strain sequencing data and analysis significantly increases the amount of scientific information available for the study of this new deadly form of E. coli and has yielded critical insights into its causative agent," said co-author, David A. Rasko, Ph.D., Assistant Professor, University of Maryland School of Medicine, Institute for Genome Sciences and Department of Microbiology and Immunology. "Our results provide the most complete published genome of this strain to date and highlight the importance of DNA sequencing to understanding how the plasticity of bacterial genomes facilitates the emergence of new ."

Whole genome sequencing involves decoding the precise order of nucleotide bases that make up an organism's complete set of DNA and provides more comprehensive information than other analysis methods such as DNA fingerprinting or arrays. With advances in technology and decreasing cost, whole genome sequencing is emerging as the gold standard method for identifying and classifying infectious agents. SMRT technology is the latest advance in DNA sequencing, capable of generating long sequence reads to resolve structural variations and complex genomes at ultra-fast speeds by 'eavesdropping' on DNA replicating in real time.

Eric Schadt, Ph.D., Chief Scientific Officer of Pacific Biosciences and co-author of the paper commented: "We have reached a new era in which communities of researchers can rapidly share large-scale data sets and analyses vital for public health. Sequencing genomes in hours, as opposed to days or weeks, with unprecedented read lengths is the emerging hallmark of third generation DNA sequencing. The long PacBio RS reads enabled a PacBio-only de novo genome assembly, a key component of new pathogen characterization, as well as deeper insights into structural variants."

Related Stories

Researchers crack code of German E. Coli outbreak

Jul 27, 2011

A team led by University of Maryland School of Medicine Institute for Genome Sciences researchers has unraveled the genomic code of the E. coli bacterium that caused the ongoing deadly outbreak in Germany that began in May ...

The complete map of the Germany E. coli O104 genome released

Jun 16, 2011

Building upon previous efforts producing a high-quality de novo genome assemblies of deadly 2011 E. coli O104:H4 outbreak strain (http://www.genomics.cn/en/news_show.php?type=show&id=651), the BGI and their collaborators at the University Medical Centre Hamburg-Eppendorf h ...

DNA scan yields insights into Germany's E. coli bug

Jun 23, 2011

A strain of E. coli bacteria blamed for killing dozens of people in Germany is a genetic mix whose ability to stick to intestinal walls may have made it so lethal, a study in The Lancet said on Wednesday.

Recommended for you

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.