A VIP for normal brain development

July 1, 2011

led by Pierre Gressens, at Inserm U676, Paris, France, and Vincent Lelièvre, at CNRS UPR-3212, Strasbourg, France -- has identified a signaling pathway key for normal brain development in the mouse. Of paramount importance, the data generated suggest that environmental factors, including maternal ones, can influence the final size of the brain.

Individuals with microcephaly primary hereditary (MCPH) are born with a very small head and a small brain. They suffer mild developmental delay, hyperkinesia (excessive restlessness), and mild to severe cognitive impairment. Although mutation of any one of seven genes is known to cause MCPH, a lack of good animal models has made it hard to understand the underlying mechanisms.

To gain insight into this, Gressens, Lelievre, and colleagues used a mouse model in which microcephaly is induced by blocking the peptide VIP during gestation using a VIP antagonist (VA). Initial analysis indicated that prenatal administration of VA gives rise to brain abnormalities that mimic those observed in patients with MCPH. Further analysis identified a cellular and molecular mechanism for the observed abnormalities. The authors therefore conclude that the identified molecular pathway (the VIP/Mcph1/Chk1 pathway) is key for normal and suggest that environmental factors disturbing this pathway can modulate the development of the brain as well as its final size.

More information: www.jci.org/articles/view/43824?key=1236357151332f9ec680

Related Stories

Recommended for you

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.