Identifying correlations in electronic patient records

A new study demonstrates how text mining of electronic health records can be used to create medical term profiles of patients, which can be used both to identify co-occurrence of diseases and to cluster patients into groups with highly similar clinical features. The study, carried out in Denmark by a multi-disciplinary group of bioinformaticians, systems biologists and clinicians, will be published in the open-access journal PLoS Computational Biology on 25th August 2011.

Health records contain detailed phenotypic information on the clinical profile of each individual patient; however, a large part of the clinical features are described in free text produced by staff often covering many years of hospitalization.

"Using our text mining approach on the free text in the records, we identified roughly ten times as many medical terms characterizing each patient as were manually included by the . Worldwide, the manually inserted medical terms in medical records are heavily biased by local practice and billing purposes. Using our method we obtained a much more fine-grained clinical characterization of each patient, which ultimately also may be very valuable for choosing personalized treatment regimes", says Professor Søren Brunak from the Technical University of Denmark and the University of Copenhagen who led the team behind the research project.

The team used the "International Classification of Disease" terminology, maintained by the WHO as a controlled vocabulary, as the basis for the analysis. "The fact that terminologies like ICD have been translated word by word between languages makes it possible in principle to use the same term profiles across language barriers and combine cohorts across countries" says author Professor Lars Juhl Jensen from the University of Copenhagen.

The research group identified a large number of diseases and symptoms which co-occur much more than expected when compared to the individual frequencies of the diseases. The group subsequently mapped these correlations to the genetic level by investigating gene overlaps in protein interaction networks already linked to the individual diseases. "The aim here is to discover a possible genetic cause behind the disease correlations observed, thus interfacing the electronic patient record data directly to the DNA sequencing of human individuals", says Brunak.

More information: Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, et al. (2011) Using Electronic Patient Records to Discover Disease Correlations and Stratify Patient Cohorts. PLoS Comput Biol 7(8): e1002141. doi:10.1371/journal.pcbi.1002141

add to favorites email to friend print save as pdf

Related Stories

Electronic medical records speed genetic health studies

Apr 20, 2011

Recruiting thousands of patients to collect health data for genetic clues to disease is expensive and time consuming. But that arduous process of collecting data for genetic studies could be faster and cheaper by instead ...

Recommended for you

Cold cash just keeps washing in from ALS challenge

3 hours ago

In the couple of hours it took an official from the ALS Association to return a reporter's call for comment, the group's ubiquitous "ice bucket challenge" had brought in a few million more dollars.

Medtronic spends $350M on another European deal

19 hours ago

U.S. medical device maker Medtronic is building stronger ties to Europe, a couple months after announcing a $42.9 billion acquisition that involves moving its main executive offices across the Atlantic, where it can get a ...

Mind over matter for people with disabilities

Aug 26, 2014

People with serious physical disabilities are unable to do the everyday things that most of us take for granted despite having the will – and the brainpower – to do so. This is changing thanks to European ...

Ukraine's former world's tallest man dies

Aug 25, 2014

Ukraine's tallest man, who briefly held the world record but gave it up to live as a recluse, has died due to complications from the condition that saw him never stop growing, local media reported Monday.

User comments