Mutation linked with the absence of fingerprints

Scientists have identified a mutation that might underlie an extremely rare condition, called "adermatoglyphia," which causes people to be born without any fingerprints. The research, published by Cell Press online August 4th in The American Journal of Human Genetics, not only provides valuable insight into the genetic basis of adermatoglyphia and of typical fingerprint formation but also underscores the usefulness of rare genetic mutations as a tool for investigating unknown aspects of our biology.

Human skin has ridges called dermatoglyphs that are present on the fingers, palms, toes and soles. The dermatoglyphs on the finger tips, better known as , are often used as a means for establishing identity. In fact, adermatoglyphia was recently named "immigration delay disease" because affected individuals report significant difficulties entering countries that require fingerprint recording. "We know that fingerprints are fully formed by 24 weeks after fertilization and do not undergo any modification throughout life," explains the senior study author, Dr. Eli Sprecher from Tel Aviv Sourasky Medical Center in Israel. "However, the factors underlying the formation and pattern of fingerprints during embryonic development are largely unknown."

To better understand the genetics of fingerprint formation, Dr. Sprecher and colleagues investigated a large Swiss family presenting with adermatoglyphia. All affected members of the family had displayed an absence of fingerprints since birth, and this absence was associated with a reduced number of sweat glands. Using a sophisticated genetic analysis of affected and unaffected family members, the researchers discovered that a mutation in the gene SMARCAD1 causes the disease. The protein encoded by the gene is thought to control the expression of a large number of target genes associated with development. More specifically, the group demonstrated the existence of a short version of SMARCAD1 that was exclusively expressed in the skin and was mutated in individuals with the disease.

"Taken together, our findings implicate a skin-specific version of SMARCAD1 in the regulation of fingerprint development," concludes Dr. Sprecher. "Although little is known about the function of full-length SMARCAD1 and virtually nothing regarding the physiological role of the skin-specific version of the gene, it is tempting to speculate that SMARCAD1 in the skin may target genes involved in dermatoglyph and sweat gland development, two structures jointly affected in the present family. Further, as abnormal fingerprints are known to sometimes herald severe disorders, our finding may also impact the understanding of additional diseases affecting not only the skin."

Related Stories

Scientists Unravel Mystery of People with No Fingerprints

Sep 13, 2006

Researchers at the Technion-Israel Institute of Technology have succeeded in unraveling the genetic basis of two rare congenital diseases in which afflicted persons have no fingerprints. The results will be published in the ...

Fingerprints do not improve grip friction

Jun 12, 2009

Fingerprints mark us out as individuals and leave telltale signs of our presence on every object that we touch, but what are fingerprints really for? According to Roland Ennos, from the University of Manchester, ...

How people work... and the mystery of your fingerprints

Jan 06, 2010

Why do we chew our food? Research has shown that it is not, as has long been presumed, to make chunks of food small enough to swallow without choking. Biomechanics, who have modelled the cohesive strength ...

Using 'Minutiae' to Match Fingerprints Can Be Accurate

Mar 17, 2006

A study by the National Institute of Standards and Technology shows that computerized systems that match fingerprints using interoperable minutiae templates—mathematical representations of a fingerprint image—can ...

Discovery of facial malformation gene

May 15, 2009

(PhysOrg.com) -- The first specific genetic mutation which can cause a potentially serious facial disfigurement has been identified by researchers at Oxford University. The finding, published online in the ...

Recommended for you

Down's chromosome cause genome-wide disruption

6 hours ago

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Research uncovers DNA looping damage tied to HPV cancer

12 hours ago

It's long been known that certain strains of human papillomavirus (HPV) cause cancer. Now, researchers at The Ohio State University have determined a new way that HPV might spark cancer development – by ...

New therapy against rare gene defects

Apr 15, 2014

On 15th April is the 1st International Pompe Disease Day, a campaign to raise awareness of this rare but severe gene defect. Pompe Disease is only one of more than 40 metabolic disorders that mainly affect children under ...

User comments