Inflammatory mediator enhances plaque formation in Alzheimer's disease

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive impairment and memory loss. Now, a new study published by Cell Press in the September 8 issue of the journal Neuron identifies a previously unrecognized link between neuroinflammation and the classical pathological brain changes that are the hallmark of the disease. In addition, the research identifies a new potential therapeutic target for AD.

AD is characterized by abnormal accumulation of amyloid Β (AΒ) protein plaques and neurofibrillary tangles of tau protein in the brain. In addition to these classical hallmarks, neuroinflammation has also been identified as a major component of the disease. Previous research has suggested that AD associated inflammation increases the inducible nitric oxide synthase (NOS2) in and support cells. Importantly, NOS2 leads to generation of nitric oxide (NO) which has been linked with neurodegeneration.

"One of the fingerprints of NO is tyrosine nitration, a posttranslational protein modification that can induce structural changes leading to protein aggregation," explains senior study author, Dr. Michael T. Heneka, from the University of Bonn in Germany. "Since there is so far no mechanistic explanation how expression of NOS2 and the subsequent production of NO and its reaction products modulate AΒ and thereby the progression of AD, we speculated that nitration of AΒ might contribute to AD pathology."

In their study, first author Dr. Markus P. Kummer and colleagues discovered that AΒ is a novel NO target. They observed nitrated AΒ in AD and AD mouse models and found that this modification accelerated the deposition of human AΒ. Importantly, reduction of NOS2 reduced AΒ deposition and memory deficits in a mouse model of AD. Further, nitrated AΒ induced the formation of amyloid plaques when injected into the brains of mice with genetic mutations associated with AD.

"Taken together, our results identify a novel modification of AΒ, tyrosine nitration, and propose a causative link between the AΒ cascade, activation of NOS2, and the subsequent increase in its reaction product during AD," concludes Dr. Heneka. "We think that nitrated AΒ may serve as marker of early AΒ plaque formation. More importantly, it may be a promising target for an AD therapy, and that application of specific inhibitors of NOS2 may therefore open a new therapeutic avenue in AD."

Related Stories

Recommended for you

New research supporting stroke rehabilitation

5 hours ago

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

Team finds an off switch for pain

10 hours ago

In research published in the medical journal Brain, Saint Louis University researcher Daniela Salvemini, Ph.D. and colleagues within SLU, the National Institutes of Health (NIH) and other academic institutions have d ...

Brain researchers pinpoint gateway to human memory

12 hours ago

An international team led by researchers of the University of Magdeburg and the DZNE has successfully determined the location, where memories are generated with a level of precision never achieved before. ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.