Major advance in sleeping sickness drug made by Glasgow scientists

September 6, 2011

A new study published in the open-access journal PLoS Neglected Tropical Diseases on September 6th presents a key advance in developing a safer cure for sleeping sickness. Led by Professor Peter Kennedy, researchers at the University of Glasgow's Institute for Infection, Immunology and Inflammation have created a version of the drug most commonly used to treat sleeping sickness which can be administered orally in pill form.

Sleeping sickness – or human African trypanosomiasis (HAT) – is a neglected tropical disease of major importance. Transmitted by the tsetse fly and caused by the trypanosome parasite, is invariably fatal if left untreated. Once the disease has crossed the blood-brain barrier and entered the central nervous system the most commonly used treatment is an intravenous course of the arsenic-based drug melarsoprol. Because melarsoprol has a low solubility in water, it is dissolved in propylene glycol and administered intravenously. The result is a highly-toxic drug that kills five per cent of patients receiving it and leaves many others permanently brain-damaged.

Researchers at the University of Glasgow combined melarsoprol with cyclodextrins – molecules that surrounded the drug allowing it to be administered orally, increasing its solubility and releasing the drug more slowly in the gut. In laboratory tests the altered drug was shown to retain its ability to kill the infection, and was able to cure mice infected with the parasite after a seven-day daily oral dosing schedule. The cleared parasites from the brain and restored normal blood-brain barrier integrity.

According to Prof. Kennedy, "This new research is the most clinically important in the 20 years of our trypanosome research group. It has the potential of a major therapeutic advance and if it is equally effective in humans then it would also have a significant socio-economic impact because the duration of inpatient treatment would be shorter and some patients might even be eventually treated at home."

Prof Kennedy added: "You always have to be very cautious when extrapolating results from mouse models to the human disease but there are several reasons why we are quietly optimistic that this may very well work in humans too.

More information: Rodgers J, Jones A, Gibaud S, Bradley B, McCabe C, et al. (2011) Melarsoprol Cyclodextrin Inclusion Complexes as Promising Oral Candidates for the Treatment of Human African Trypanosomiasis. PLoS Negl Trop Dis 5(9): e1308. doi:10.1371/journal.pntd.0001308

Related Stories

Recommended for you

Scientists convert skin cells into placenta-generating cells

October 12, 2015

Regenerative medicine is a new and expanding area that aims to replace lost or damaged cells, tissues or organs in the human body through cellular transplantation. Embryonic stem cells (ESCs) are pluripotent cells that are ...

Genes linked with malaria's virulence shared by apes, humans

October 12, 2015

The malaria parasite molecules associated with severe disease and death—those that allow the parasite to escape recognition by the immune system—have been shown to share key gene segments with chimp and gorilla malaria ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.