Researchers make neurological disease breakthrough

By William G. Gilroy

(Medical Xpress) -- Results of a study by a group of University of Notre Dame researchers represent a promising step on the road to developing new drugs for a variety of neurological diseases.

The group from the University’s Departments of Chemistry and Biochemistry and Biological Sciences and the Freimann Life Sciences Center focused on the design, synthesis and evaluation of water-soluble “gelatinase inhibitor” compounds.

Gelatinases, a class of enzymes, have been implicated in a host of human diseases from cancer to cardiovascular conditions and in particular neurological conditions such as stroke, aneurysm and traumatic brain injury. Researchers have increasingly focused on developing potent gelatinase inhibitor drugs to treat acute gelatinase-dependent diseases.

The Notre Dame group has been investigating variants of a compound called “SB-3CT,” which shows promise as a selective and potent gelatinase inhibitor. SB-3CT has exhibited potent efficacy in animal models for a variety of neurological and cancer diseases.

The preferred method of treatment for acute gelatinase-dependent diseases is intravenous infusion. Intravenous administration requires that the compound be water soluble. Unfortunately SB-3CT has poor water solubility and poor drug-like properties.

In a new approach, the Notre Dame researchers used a prodrug strategy to address this issue. A prodrug is an inactive precursor of a drug that is converted into its active form in the body by normal metabolic processes.

The prodrug strategy produced a greater than 5,000-fold increase in water solubility compared to SB-3CT. In addition to its high water solubility, the prodrug (referred to as ND-478) was chemically stable, non-toxic and was quickly converted to the active drug in the blood. These favorable properties of ND-478 make it suitable for intravenous administration in the treatment of acute gelatinase-dependent diseases. Such a compound offers the possibility of translation into the clinic for treatment of strokes, aneurysms and traumatic brain injury.

The Notre Dame research team included Mayland Chang, Shahriar Mobashery, Major Gooyit, Mijoon Lee, Valerie A. Schroeder, Masahiro Ikerjiri and Mark Suckow. Their paper appears in the Journal of Medical Chemistry.

Related Stories

Breakthrough in Niemann-Pick Type C research reported

Mar 21, 2011

A paper announcing a breakthrough discovery in the fight against Niemann-Pick Type C, coauthored by Olaf Wiest and Paul Helquist of the University of Notre Dame's Department Chemistry & Biochemistry and Frederick Maxfield, ...

Recommended for you

Growing a blood vessel in a week

11 hours ago

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

14 hours ago

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments